×

Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. (English) Zbl 1480.35131

Summary: We are concerned with the following nonlinear fractional Schrödinger equation: \[ (-\Delta)^s u+V(x)u+\omega u = |u|^{p-2}u\quad \text{in } \mathbb{R}^N, \tag{P} \] where \( s\in(0,1) \) and \( p\in\left(2+4s/N,2^*_s\right) \), that is, the mass supercritical and Sobolev subcritical. Under certain assumptions on the potential \( V:{\mathbb{R}}^N\rightarrow{\mathbb{R}} \), positive and vanishing at infinity including potentials with singularities (which is important for physical reasons), we prove that there exists at least one \( L^2 \)-normalized solution \( (u,\omega)\in H^s({\mathbb{R}}^N)\times{\mathbb{R}}^+ \) of equation (P). In order to overcome the lack of compactness, the proof is based on a new min-max argument and splitting lemma for nonlocal version.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] T. Bartsch; L. Jeanjean; N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R}}^3\), J. Math. Pures Appl., 9, 583-614 (2016) · Zbl 1347.35107 · doi:10.1016/j.matpur.2016.03.004
[2] T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, Commun. Partial Differ. Equ., (2021), 28pp.
[3] T. Bartsch; T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 259-281 (2005) · Zbl 1114.35068 · doi:10.1016/j.anihpc.2004.07.005
[4] V. Benci; G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99, 283-300 (1987) · Zbl 0635.35036 · doi:10.1007/BF00282048
[5] D. Bonheure; J. B. Casteras; T. Gou; L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372, 2167-2212 (2019) · Zbl 1420.35343 · doi:10.1090/tran/7769
[6] T. Boulenger; D. Himmelsbach; E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271, 2569-2603 (2016) · Zbl 1348.35038 · doi:10.1016/j.jfa.2016.08.011
[7] X. Cabré; Y. Sire, Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 23-53 (2014) · Zbl 1286.35248 · doi:10.1016/j.anihpc.2013.02.001
[8] J. A. Cardoso, D. S. dos Prazeres and U. B. Severo, Fractional Schrödinger equations involving potential vanishing at infinity and supercritical exponents, Z. Angew. Math. Phys., 71 (2020), 14pp. · Zbl 1445.35261
[9] G. Cerami; D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differ. Equ., 17, 257-281 (2003) · Zbl 1290.35050 · doi:10.1007/s00526-002-0169-6
[10] M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 7pp. · Zbl 1275.81030
[11] J. Correia; G. Figueiredo, Existence of positive solution for a fractional elliptic equation in exterior domain, J. Differ. Equ., 268, 1946-1973 (2020) · Zbl 1430.35248 · doi:10.1016/j.jde.2019.09.024
[12] A. Cotsiolis; N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295, 225-236 (2004) · Zbl 1084.26009 · doi:10.1016/j.jmaa.2004.03.034
[13] J. Dávila; M. del Pino; J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differ. Equ., 256, 858-892 (2014) · Zbl 1322.35162 · doi:10.1016/j.jde.2013.10.006
[14] E. Di Nezza; G. Palatucci; E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces, Bull. des Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[15] M. Du; L. Tian; J. Wang; F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A, 149, 617-653 (2019) · Zbl 1422.35059 · doi:10.1017/prm.2018.41
[16] P. Felmer; A. Quaas; J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[17] B. Feng, J. Ren and Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the \(L^2\)-supercritical case, J. Math. Phys., 61 (2020), 19pp. · Zbl 1454.35339
[18] R. Frank; E. Lenzmann; L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69, 1671-1726 (2016) · Zbl 1365.35206 · doi:10.1002/cpa.21591
[19] Y. Guo; Z. Q. Wang; X. Zeng; H. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31, 957-979 (2018) · Zbl 1396.35018 · doi:10.1088/1361-6544/aa99a8
[20] X. He; W. Zou, Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth, Sci. China Math., 63, 1571-1612 (2020) · Zbl 1448.35126 · doi:10.1007/s11425-020-1692-1
[21] X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differ. Equ., 55 (2016), 39pp. · Zbl 1395.35193
[22] N. Ikoma and Y. Miyamoto, Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differ. Equ., 48 (2020), 20pp. · Zbl 1434.35179
[23] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 1633-1659 (1997) · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[24] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[25] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 3 (2002), 7pp.
[26] H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differ. Equ., 59 (2020), 35pp. · Zbl 1445.35307
[27] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}}^N\), J. Math. Phys., 54 (2013), 17pp. · Zbl 1281.81034
[28] R. Servadei; E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[29] X. Shang; J. Zhang, Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 17, 2239-2259 (2018) · Zbl 1395.35016 · doi:10.3934/cpaa.2018107
[30] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 43pp. · Zbl 1440.35311
[31] A. Xia; J. Yang, Normalized solutions of higher-order Schrödinger equations, Discrete Contin. Dyn. Syst., 39, 447-462 (2019) · Zbl 1404.35152 · doi:10.3934/dcds.2019018
[32] J. Yang; J. Yang, On supercritical nonlinear Schrödinger equations with ellipse-shaped potentials, Proc. Roy. Soc. Edinburgh Sect. A, 150, 3187-3215 (2020) · Zbl 1460.35103 · doi:10.1017/prm.2019.66
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.