×

Distributed finite-time optimisation algorithm for second-order multi-agent systems subject to mismatched disturbances. (English) Zbl 07916996

Summary: In this study, the distributed finite-time optimisation problem is investigated for second-order multi-agent systems subject to mismatched disturbances. The whole control design is conducted within a feedforward-feedback composite control framework, which consists of two main sessions. In the first session, based on homogeneous systems theory, a finite-time optimisation control algorithm is presented for a nominal second-order single system with a quadratic cost function. In the second session, via the result in the first session and by combining finite-time disturbance observer, homogeneous systems theory, integral sliding-mode control, and distributed finite-time estimator techniques together, a distributed finite-time optimisation control algorithm is proposed for second-order multi-agent systems with mismatched disturbances and quadratic local cost functions. Under the proposed control algorithm, the outputs of all the agents reach finite-time consensus on the minimiser of the global cost function. Simulations demonstrate the effectiveness and superiority of the proposed distributed finite-time optimisation control algorithm.
© 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology

MSC:

93A16 Multi-agent systems
93C73 Perturbations in control/observation systems
93B52 Feedback control
Full Text: DOI

References:

[1] NedicA.OzdaglarA.ParriloP.: ‘Constrained consensus and optimization in multi‐agent networks’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 922-938 · Zbl 1368.90143
[2] TangY.DengZ.HongY.: ‘Optimal output consensus of high‐order multiagent systems with embedded technique’, IEEE Trans. Cybern., 2019, 49, (5), pp. 1768-1779
[3] WangD.WangZ.WenC. et al.: ‘Second‐order continuous‐time algorithm for optimal resource allocation in power systems’, IEEE Trans. Ind. Inform., 2019, 15, (2), pp. 626-637
[4] ZhangY.LouY.HongY. et al.: ‘Distributed projection‐based algorithms for source localization in wireless sensor networks’, IEEE Trans. Wirel. Commun., 2015, 14, (6), pp. 3131-3142
[5] JohanssonB.RabiM.JohanssonM.: ‘A randomized incremental subgradient method for distributed optimization in networked systems’, SIAM J. Control Optim., 2009, 20, (3), pp. 1157-1170 · Zbl 1201.65100
[6] DuchiJ.C.AgarwalA.WainwrightM.J.: ‘Dual averaging for distributed optimization: convergence analysis and network scaling’, IEEE Trans. Autom. Control, 2012, 57, (3), pp. 592-606 · Zbl 1369.90156
[7] YuanD.HoD.W.C.XuS.: ‘Regularized primal‐dual subgradient method for distributed constrained optimization’, IEEE Trans. Cybern., 2016, 46, (9), pp. 2109-2118
[8] LiuS.QiuZ.XieL.: ‘Convergence rate analysis of distributed optimization with projected subgradient algorithm’, Automatica, 2017, 83, pp. 162-169 · Zbl 1373.93023
[9] GuoF.WenC.MaoJ. et al.: ‘A distributed hierarchical algorithm for multi‐cluster constrained optimization’, Automatica, 2017, 77, pp. 230-238 · Zbl 1355.93006
[10] GharesifardB.CortésJ.: ‘Distributed continuous‐time convex optimization on weight‐balanced digraphs’, IEEE Trans. Autom. Control, 2013, 59, (3), pp. 781-786 · Zbl 1360.90257
[11] RahiliS.RenW.: ‘Distributed continuous‐time convex optimization with time‐varying cost functions’, IEEE Trans. Autom. Control, 2017, 62, (4), pp. 1590-1605 · Zbl 1366.93212
[12] YangS.LiuQ.WangJ.: ‘A multi‐agent system with a proportional‐integral protocol for distributed constrained optimization’, IEEE Trans. Autom. Control, 2017, 6, (7), pp. 3461-3467 · Zbl 1370.90259
[13] ZhaoY.LiuY.WenG. et al.: ‘Distributed optimization for linear multiagent systems: edge‐ and node‐based adaptive designs’, IEEE Trans. Autom. Control, 2017, 62, (7), pp. 3602-3609 · Zbl 1370.93153
[14] LiZ.DingZ.SunJ. et al.: ‘Distributed adaptive convex optimization on directed graphs via continuous‐time algorithms’, IEEE Trans. Autom. Control, 2018, 65, (3), pp. 1434-1441 · Zbl 1395.90201
[15] NingB.HanQ.‐L.ZuoZ.: ‘Distributed optimization of multiagent systems with preserved network connectivity’, IEEE Trans. Cybern., 2018, 49, (11), pp. 3980-3990
[16] ChenW.‐H.YangJ.GuoL. et al.: ‘Disturbance‐observer‐based control and related methods‐an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 1083-1095
[17] HuangY.XueW.: ‘Active disturbance rejection control: methodology and theoretical analysis’, ISA Trans., 2014, 53, (4), pp. 963-976
[18] WangJ.LiS.YangJ. et al.: ‘Extended state observer‐based sliding mode control for PWM‐based DC‐DC buck power converter systems with mismatched disturbances’, IET Control Theory Appl., 2015, 9, (4), pp. 579-586
[19] WangX.LiS.LamJ.: ‘Distributed active anti‐disturbance output consensus algorithms for higher‐order multi‐agent systems with mismatched disturbances’, Automatica, 2016, 74, pp. 30-37 · Zbl 1348.93020
[20] ZhaoY.ZhangW.: ‘Cooperative output regulation of linear heterogeneous systems with mismatched uncertainties via generalised extended state observer’, IET Control Theory Appl., 2017, 11, (5), pp. 685-693
[21] YuS.LongX.GuoG.: ‘Continuous finite‐time output consensus tracking of high‐order agents with matched and unmatched disturbances’, IET Control Theory Appl., 2016, 10, (14), pp. 1716-1723
[22] WangX.LiS.YuX. et al.: ‘Distributed active anti‐disturbance consensus for leader‐follower higher‐order multi‐agent systems with mismatched disturbances’, IEEE Trans. Autom. Control, 2017, 62, (11), pp. 5795-5801 · Zbl 1390.93547
[23] XieM.YuS.LinH. et al.: ‘Improved sliding mode control with time delay estimation for motion tracking of cell puncture mechanism’, IEEE Trans. Circuits Syst. I Regul. Pap., 2020, 67, (9), pp. 3199-3210 · Zbl 1468.93129
[24] WangX.LiS.WangG.: ‘Distributed optimization for disturbed second‐order multiagent systems based on active antidisturbance control’, IEEE Trans. Neural Netw. Learn. Syst., 2020, 31, (6), pp. 2104-2117
[25] BhatS.P.BernsteinmD.S.: ‘Finite‐time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751-766 · Zbl 0945.34039
[26] XieM.GulzarM.M.TehreemH. et al.: ‘Automatic voltage regulation of grid connected photovoltaic system using Lyapunov based sliding mode controller: a finite‐time approach’, Int. J. Control Autom. Syst., 2020, 18, (6), pp. 1550-1560
[27] WangX.HongY.JiH.: ‘Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection’, IEEE Trans. Cybern., 2016, 46, (7), pp. 1655-1666
[28] WangX.HongY.YiP. et al.: ‘Distributed optimization design of continuous‐time multiagent systems with unknown‐frequency disturbances’, IEEE Trans. Cybern., 2017, 47, (8), pp. 2058-2066
[29] TranN.‐T.WangY.YangW.: ‘Distributed optimization problem for double‐integrator systems with the presence of the exogenous disturbance’, Neurocomputing, 2018, 272, pp. 386-395
[30] ZhangY.DengZ.HongY.: ‘Distributed optimal coordination for multiple heterogeneous Euler‐Lagrangian systems’, Automatica, 2017, 79, pp. 207-213 · Zbl 1371.93025
[31] ChwaD.: ‘Robust distance‐based tracking control of wheeled mobile robots using vision sensors in the presence of kinematic disturbances’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 6172-6183
[32] SongY.ChenW.: ‘Finite‐time convergent distributed consensus optimisation over networks’, IET Control Theory Appl., 2016, 10, (11), pp. 1314-1318
[33] LinP.RenW.FarrellJ.A.: ‘Distributed continuous‐time optimization: nonuniform gradient gains, finite‐time convergence, and convex constraint set’, IEEE Trans. Autom. Control, 2017, 62, (5), pp. 2239-2253 · Zbl 1366.90201
[34] FengZ.HuG.CassandrasC.G.: ‘Finite‐time distributed convex optimization for continuous‐time multi‐agent systems with disturbance dejection’, IEEE Trans. Control Netw. Syst., 2020, 7, (2), pp. 686-698 · Zbl 1516.93223
[35] ChenG.LiZ.: ‘A fixed‐time convergent algorithm for distributed convex optimization in multi‐agent systems’, Automatica, 2018, 95, pp. 539-543 · Zbl 1402.93023
[36] HuZ.YangJ.: ‘Distributed finite‐time optimization for second order continuous‐time multiple agents systems with time‐varying cost function’, Neurocomputing, 287, pp. 173-184
[37] WangX.WangG.LiS.: ‘Distributed finite‐time optimization for disturbed second‐order multiagent systems’, IEEE Trans. Cybern., 2020, in press, doi: https://doi.org/10.1109/TCYB.2020.2988490 · doi:10.1109/TCYB.2020.2988490
[38] HongY.XuY.HuangJ.: ‘Finite‐time control for robot manipulators’, Syst. Control Lett., 2002, 46, (4), pp. 243-253 · Zbl 0994.93041
[39] BhatS.P.BernsteinD.S.: ‘Geometric homogenity with applications to finite‐time stability’, Math. Control Signals Syst., 2005, 17, (2), pp. 101-127 · Zbl 1110.34033
[40] QianC.LinW.: ‘Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 1457-1471 · Zbl 1366.93523
[41] HardyG.LittlewoodJ.PolyaG.: ‘Inequalities’ (Cambridge University Press, Cambridge, U.K., 1952) · Zbl 0047.05302
[42] HuangX.LinW.YangB.: ‘Global finite‐time stabilizaton of a class of uncertain nonlinear systems’, Automatica, 2005, 41, (5), pp. 881-888 · Zbl 1098.93032
[43] ShtesselY.B.ShkolnikovI.A.LevantA.: ‘Smooth second‐order sliding modes: missile guidance application’, Automatica, 2007, 43, (8), pp. 1470-1476 · Zbl 1130.93392
[44] BoydS.VandenbergheL.: ‘Convex optimization’ (Cambridge University Press, Cambridge, UK, 2004) · Zbl 1058.90049
[45] Olfati‐SaberR.MurrayR.M.: ‘Consensus problems in networks of agents with switching topology and time‐delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 1520-1533 · Zbl 1365.93301
[46] WangX.WangG.LiS.: ‘Distributed finite‐time optimization for integrator chain multi‐agent systems with disturbances’, IEEE Trans. Autom. Control, 2020, in press, doi: https://doi.org/10.1109/TAC.2020.2979274 · Zbl 1536.93775 · doi:10.1109/TAC.2020.2979274
[47] KhalilH.K.: ‘Nonlinear systems’ (Prentice Hall, New York, USA, 2002, 3rd edn.) · Zbl 1003.34002
[48] WuZ.KarimiH.R.DangC.: ‘A deterministic annealing neural network algorithm for the minimum concave cost transportation problem’, IEEE Trans. Neural Netw. Learn. Syst., 2020, in press, doi: https://doi.org/10.1109/TNNLS.2019.2955137 · doi:10.1109/TNNLS.2019.2955137
[49] WuZ.KarimiH.R.DangC.: ‘An approximation algorithm for graph partitioning via deterministic annealing neural network’, Neural Netw., 2019, 117, pp. 191-200 · Zbl 1434.68683
[50] DingD.WangZ.HanQ.‐L.: ‘Neural‐network‐based consensus control for multiagent systems with input constraints: the event‐triggered case’, IEEE Trans. Cybern., 2020, 50, (8), pp. 3719-3730
[51] ChenW.DingD.DongH. et al.: ‘Finite‐horizon \(H \operatorname{\infty}\) bipartite consensus control of cooperation‐competition multiagent systems with round‐robin protocols’, IEEE Trans. Cybern., 2020, in press, doi: https://doi.org/10.1109/TCYB.2020.2977468 · doi:10.1109/TCYB.2020.2977468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.