×

Contact topology and electromagnetism: the Weinstein conjecture and Beltrami-Maxwell fields. (English) Zbl 07906069

Summary: We draw connections between contact topology and Maxwell fields in vacuo on three-dimensional closed Riemannian submanifolds in four-dimensional Lorentzian manifolds. This is accomplished by showing that contact topological methods can be applied to reveal topological features of a class of solutions to Maxwell’s equations. This class of Maxwell fields is such that electric fields are parallel to magnetic fields. In addition these electromagnetic fields are composed of the so-called Beltrami fields. We employ several theorems resolving the Weinstein conjecture on closed manifolds with contact structures and stable Hamiltonian structures, where this conjecture refers to the existence of periodic orbits of the Reeb vector fields. Here a contact form is a special case of a stable Hamiltonian structure. After showing how to relate Reeb vector fields with electromagnetic 1-forms, we apply a theorem regarding contact manifolds and an improved theorem regarding stable Hamiltonian structures. Then a closed field line is shown to exist, where field lines are generated by Maxwell fields. In addition, electromagnetic energies are shown to be conserved along the Reeb vector fields.
©2024 American Institute of Physics

MSC:

37J55 Contact systems
37J39 Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.)
53C40 Global submanifolds
53D10 Contact manifolds (general theory)
53Z05 Applications of differential geometry to physics
57K33 Contact structures in 3 dimensions
57R17 Symplectic and contact topology in high or arbitrary dimension

References:

[1] Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, Tensor Analysis, and Applications, 1998, Springer
[2] Arrayás, M.; Bouwmeester, D.; Trueba, J. L., Knots in electromagnetism, Phys. Rep., 667, 1-61, 2017 · Zbl 1359.78002 · doi:10.1016/j.physrep.2016.11.001
[3] Benn, I.; Tucker, R., An Introduction to Spinors and Geometry with Applications in Physics, 1987, Adam Hilger Ltd.
[4] Bode, B., Stable knots and links in electromagnetic fields, Commun. Math. Phys., 387, 1757-1770, 2021 · Zbl 1493.35113 · doi:10.1007/s00220-021-04219-3
[5] Burton, D. A.; Noble, A., A Geometrical Approach to Physics, 2024, CRC Press
[6] Cardona, R.; Midanda, E.; Peltra-Salas, D., Euler flows and singular geometric structures, Proc. R. Soc. London, Ser. A, 377, 20190034, 2019 · Zbl 1462.76048 · doi:10.1098/rsta.2019.0034
[7] Choquet-Bruhat, Y.; DeWitte-Morette, C., Analysis, Manifolds and Physics Part I: Basics, 1982, Elsevier · Zbl 0492.58001
[8] Cieliebak, K.; Volkov, E., First steps in stable Hamiltonian topology, J. Eur. Math. Soc., 17, 321-404, 2015 · Zbl 1315.53097 · doi:10.4171/jems/505
[9] da Silva, A., Lectures on Symplectic Geometry, 2008, Springer
[10] Dahl, M. F., Contact geometry in electromagnetism, Prog. Electromagn. Res., 46, 77-104, 2004 · doi:10.2528/pier03070801
[11] Dahl, M. F., Electromagnetic fields from contact forms, 2008
[12] Dahl, M., Non-dissipative electromagnetic media with two Lorentz null cones, Ann. Phys., 330, 55-73, 2013 · Zbl 1268.35117 · doi:10.1016/j.aop.2012.11.005
[13] Dombre, T.; Frisch, U.; Greene, J.; Hénon, M.; Mehr, A.; Soward, A. M., Chaotic streamlines in the ABC flows, J. Fluid Mech., 167, 353-391, 1986 · Zbl 0622.76027 · doi:10.1017/s0022112086002859
[14] Enciso, A.; Peralta-Salas, D., Nondegeneracy of the eigenvalues of the Hodge Laplacian for generic metrics on 3-manifolds, Trans. Am. Math. Soc., 364, 4207-4224, 2012 · Zbl 1286.58021 · doi:10.1090/s0002-9947-2012-05496-1
[15] Enciso, A.; Peralta-Salas, D., Beltrami fields with a nonconstant proportionality factor are rare, Arch. Ration. Mech. Anal., 220, 243-260, 2016 · Zbl 1365.35119 · doi:10.1007/s00205-015-0931-5
[16] Entov, M.; Polterovich, L., Contact topology and non-equilibrium thermodynamics, Nonlinearity, 36, 3349, 2023 · Zbl 07693241 · doi:10.1088/1361-6544/acd1ce
[17] Etnyre, J.; Ghrist, R., Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture, Nonlinearity, 13, 441-458, 2000 · Zbl 0982.76021 · doi:10.1088/0951-7715/13/2/306
[18] Frenkel, T., The Geometry of Physics, 2011, Cambridge University Press · Zbl 1250.58001
[19] García-Peláez, D.; López-Monsalvo, C. S.; Rubio Ponce, A., Light propagation through optical media using metric contact geometry, J. Math. Phys., 63, 073504, 2022 · Zbl 1512.53099 · doi:10.1063/5.0087143
[20] Giroux, E., Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. l’École Norm. Supér., 27, 697-705, 1994 · Zbl 0819.53018 · doi:10.24033/asens.1704
[21] Goto, S.; Tucker, R. W., Electromagnetic fields produced by moving sources in a curved beam pipe, J. Math. Phys., 50, 063510, 2009 · Zbl 1293.78003 · doi:10.1063/1.3143568
[22] Gratus, J., A pictorial introduction to differential geometry, leading to Maxwell’s equations as three pictures, 2017
[23] Gratus, J.; McCall, M. W.; Kinsler, P., Electromagnetism, axions, and topology: A first-order operator approach to constitutive responses provides greater freedom, Phys. Rev. A, 101, 043804, 2020 · doi:10.1103/physreva.101.043804
[24] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math., 82, 307-347, 1985 · Zbl 0592.53025 · doi:10.1007/bf01388806
[25] Heal, F. W.; Obukhov, Y. N., Foundations of Classical Electrodynamics. Progress in Mathematical Physics, 2003, Birkhäuser: Birkhäuser, Boston · Zbl 1032.78001
[26] Hofer, H.; Zehnder, E., Symplectic Invariants and Hamiltonian Dynamics, 1994, Birkhäuser · Zbl 0805.58003
[27] Hutchings, M., Taubes’s proof of the Weinstein conjecture in dimension three, Bull. Am. Math. Soc., 47, 73-125, 2009 · Zbl 1197.57023 · doi:10.1090/s0273-0979-09-01282-8
[28] Hutchings, M.; Taubes, C. H., The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol., 13, 901-941, 2009 · Zbl 1169.53065 · doi:10.2140/gt.2009.13.901
[29] Inoguchi, J. I.; Munteanu, M. I., Periodic magnetic curves in Berger spheres, Tohoku Math. J., 69, 113-128, 2017 · Zbl 1367.53040 · doi:10.2748/tmj/1493172131
[30] Jackson, J. D., Classical Electrodynamics, 1998, Wiley · Zbl 0913.00013
[31] Kanda, Y., The classification of tight contact structures on the 3-torus, Commun. Anal. Geom., 5, 413-438, 1997 · Zbl 0899.53028 · doi:10.4310/CAG.1997.v5.n3.a2
[32] Kitano, M., Reformulation of electromagnetism with differential forms, Trends in Electromagnetism: From Fundamentals to Applications, 2012, IntechOpen
[33] Lakhtakia, A., Beltrami Fields in Chiral Media, 1994, World Scientific
[34] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields, 1971, Pergamon Press Ltd.
[35] Lee, J. M., Introduction to Smooth Manifolds, 2012, Springer
[36] Martinet, J., Formes de contact sur les variétés de dimension 3, Lecture Notes in Mathematics Vol. 209, 142-163, 1971, Springer: Springer, Berlin · Zbl 0215.23003
[37] McDuff, D.; Salamon, D., Introduction to Symplectic Topology, 2016, Oxford University Press · Zbl 1380.53003
[38] Mochizuki, R.; Shinohara, N.; Sanada, A., Zero poynting vector E∥H Beltrami field cylindrical cavity resonators, AIP Adv., 12, 075314, 2022 · doi:10.1063/5.0100710
[39] Moreno, A., Contact geometry in the restricted three-body problem: A survey, J. Fixed Point Theory Appl., 24, 29, 2022 · Zbl 1498.37002 · doi:10.1007/s11784-022-00956-7
[40] Nakahara, M., Geometry, Topology and Physics, 2003, Institute of Physics · Zbl 1090.53001
[41] Nakata, Y.; Urade, Y.; Nakanishi, T., Geometric structure behind duality and manifestation of self-duality from electrical circuits to metamaterials, Symmetry, 11, 1336, 2019 · doi:10.3390/sym11111336
[42] Peralta-Salas, D.; Slobodeanu, R., Contact structures and Beltrami fields on the torus and the sphere, Indiana Univ. Math. J., 72, 699-730, 2023 · Zbl 1515.53077 · doi:10.1512/iumj.2023.72.9066
[43] Taubes, C. H., The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11, 2117-2202, 2007 · Zbl 1135.57015 · doi:10.2140/gt.2007.11.2117
[44] Tucker, R. W., On the effects of geometry on guided electromagnetic waves, Theor. Appl. Mech., 34, 1-50, 2007 · Zbl 1274.78072 · doi:10.2298/tam0701001t
[45] Tucker, R. W.; Walton, T. J., Scalar pre-potentials for spinor and tensor fields on spacetime, J. Phys.: Conf. Ser., 2191, 012020, 2022 · doi:10.1088/1742-6596/2191/1/012020
[46] Uehara, K.; Kawai, T.; Shimoda, K., Non-transverse electromagnetic waves with parallel electric and magnetic fields, J. Phys. Soc. Jpn., 58, 3570-3575, 1989 · doi:10.1143/jpsj.58.3570
[47] Weinstein, A., On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differ. Equations, 33, 353-358, 1979 · Zbl 0388.58020 · doi:10.1016/0022-0396(79)90070-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.