×

Euler flows and singular geometric structures. (English) Zbl 1462.76048

Summary: In [Topology 9, 153–154 (1970; Zbl 0177.52103)], D. Tischler proved that a manifold admitting a smooth non-vanishing and closed one-form fibres over a circle. More generally, a manifold admitting \(k\)-independent closed one-form fibres over a torus \(T^k\). In this article, we explain a version of this construction for manifolds with boundary using the techniques of \(b\)-calculus [R. B. Melrose, The Atiyah-Patodi-Singer index theorem. Wellesley, MA: A. K. Peters, Ltd. (1993; Zbl 0796.58050); V. Guillemin et al., Adv. Math. 264, 864–896 (2014; Zbl 1296.53159)]. We explore new applications of this idea to fluid dynamics and more concretely in the study of stationary solutions of the Euler equations. In the study of Euler flows on manifolds, two dichotomic situations appear. For the first one, in which the Bernoulli function is not constant, we provide a new proof of Arnold’s structure theorem and describe \(b\)-symplectic structures on some of the singular sets of the Bernoulli function. When the Bernoulli function is constant, a correspondence between contact structures with singularities [the second author and C. Oms, “Contact structures with singularities”, Preprint, arxiv:1806.05638] and what we call \(b\)-Beltrami fields is established, thus mimicking the classical correspondence between Beltrami fields and contact structures (see for instance [J. Etnyre and R. Ghrist, Trans. Am. Math. Soc. 352, No. 12, 5781–5794 (2000; Zbl 0960.76020)]). These results provide a new technique to analyse the geometry of steady fluid flows on non-compact manifolds with cylindrical ends.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
53D17 Poisson manifolds; Poisson groupoids and algebroids
53C80 Applications of global differential geometry to the sciences

References:

[1] Cardona R, Miranda E. 2018 Integrable systems and closed one forms. J. Geom. Phys. 131, 204-209. (doi:10.1016/j.geomphys.2018.05.013) · Zbl 1392.37045 · doi:10.1016/j.geomphys.2018.05.013
[2] Miranda E, Oms C. 2018 Contact structures and Reeb dynamics with singularities. (https://arxiv.org/abs/1806.05638)
[3] Guillemin V, Miranda E, Pires AR. 2014 Symplectic and Poisson geometry on b-manifolds. Adv. Math. (N Y) 264, 864-896. (doi:10.1016/j.aim.2014.07.032) · Zbl 1296.53159 · doi:10.1016/j.aim.2014.07.032
[4] Melrose R. 1993 The Atiyah Patodi Singer Index Theorem. Research Notes in Mathematics. Wellesley, MA: AK Peters, Ltd. · Zbl 0796.58050
[5] Gualtieri M, Li S. 2014 Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. 2014, 3022-3074. (doi:10.1093/imrn/rnt024) · Zbl 1305.22004 · doi:10.1093/imrn/rnt024
[6] Miranda E, Planas A. 2018 Equivariant classification of bm-symplectic surfaces. Regul. Chaotic Dyn. 23, 355-371. (doi:10.1134/S1560354718040019) · Zbl 1412.53109 · doi:10.1134/S1560354718040019
[7] Arnold VI. 1987 Remarks on Poisson structures on a plane and on other powers of volume elements, (Russian) Trudy Sem. Petrovsk. No. 12, 37-46, 242; translation in J. Soviet Math. 47 (1989) 2509-2516. · Zbl 0694.58015
[8] Arnold VI. 1974 Critical point of smooth functions. Vancouver Int. Congr. Math. 1, 19-39. · Zbl 0343.58002
[9] Scott G. 2016 The geometry of bk manifolds. J. Symplectic Geom. 14, 7195-0. (doi:10.4310/JSG.2016.v14.n1.a3) · Zbl 1348.53077 · doi:10.4310/JSG.2016.v14.n1.a3
[10] Guillemin V, Miranda E, Weitsman J. 2017 Desingularizing bm-symplectic manifolds. Int. Math. Res. Not. 10, 2981-2998. (doi:10.1093/imrn/rnx126) · Zbl 1430.53089 · doi:10.1093/imrn/rnx126
[11] Cardona R, Miranda E. 2019 On the volume elements of a manifold with transverse zeroes. Regul. Chaotic Dyn. 24, 187-197. · Zbl 1435.53059
[12] Tischler D. 1970 On fibering certain foliated manifolds over S1. Topology 9, 153-154. (doi:10.1016/0040-9383(70)90037-6) · Zbl 0177.52103 · doi:10.1016/0040-9383(70)90037-6
[13] Arnold VI, Khesin BA. 1998 Topological methods in hydrodynamics. New York, NY: Springer-Verlag. · Zbl 0902.76001
[14] Peralta-Salas D. 2016 Selected topics on the topology of ideal fluid flows. Int. J. Geom. Methods Mod. Phys. 13, 1630012. (doi:10.1142/S0219887816300129) · Zbl 1469.76011 · doi:10.1142/S0219887816300129
[15] Ginzburg VL, Khesin B. 1994 Steady fluid flows and symplectic geometry. J. Geometry Phys. 14, 195-210. (doi:10.1016/0393-0440(94)90006-X) · Zbl 0805.58023 · doi:10.1016/0393-0440(94)90006-X
[16] Arnold VI. 1965 Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 17-20. (doi:10.1007/978-3-642-31031-7_3) · Zbl 0145.22203 · doi:10.1007/978-3-642-31031-7_3
[17] Cieliebak K, Volkov E. 2017 A note on the stationary Euler equations of hydrodynamics. Ergodic Theory Dyn. Syst. 37, 454-480. (doi:10.1017/etds.2015.50) · Zbl 1362.35218 · doi:10.1017/etds.2015.50
[18] Etnyre J, Ghrist R. 1999 Stratified integrals and unknots in inviscid flows. Cont. Math. 246, 99-112. (doi:10.1090/conm/246/03777) · Zbl 0989.76010 · doi:10.1090/conm/246/03777
[19] Smale S. 1960 Morse inequalities for a dynamical system. Bull. Amer. Math. Soc. 66, 43-49. (doi:10.1090/S0002-9904-1960-10386-2) · Zbl 0100.29701 · doi:10.1090/S0002-9904-1960-10386-2
[20] Hutchings M. 1998 Reidemeister torsion in generalized Morse theory. PhD thesis, Harvard University. 78 pp. ISBN: 978-0591-85470-1. · Zbl 0990.57011
[21] Hutchings M. 2002 Reidemeister torsion in generalized Morse theory. Forum Math. 14, 209-244. (doi:10.1515/form.2002.010) · Zbl 0990.57011 · doi:10.1515/form.2002.010
[22] Etnyre J, Ghrist R. 2000 Contact topology and hydrodynamics III. Knotted orbits. Trans. Am. Math. Soc. 352, 5781-5794. (doi:10.1090/S0002-9947-00-02651-9) · Zbl 0960.76020 · doi:10.1090/S0002-9947-00-02651-9
[23] Ghrist R. 2007 On the contact topology and geometry of ideal fluids. Handbook of Mathematical Fluid Dynamics IV, North Holland.
[24] McDuff D, Salamon D. 1995 Introduction to symplectic topology. New York, NY: Oxford University Press. · Zbl 0844.58029
[25] Weinstein A. 1979 On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differ. Equ. 33, 353-358. (doi:10.1016/0022-0396(79)90070-6) · Zbl 0388.58020 · doi:10.1016/0022-0396(79)90070-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.