×

Convergence analysis of a new relaxed algorithm with inertial for solving split feasibility problems. (English) Zbl 07884565

Summary: In this paper, we introduce a new algorithm for solving split feasibility problems in Hilbert spaces. The algorithm stems from the relaxed CQ method and the alternated inertial step method. The proposed algorithm uses variable step-sizes which are updated at each iteration by a cheap computation without linesearch. This step-size rule allows the resulting algorithm to work more easily without the prior knowledge of the operator norm. Numerical experiments are implemented to illustrate the theoretical results and also to compare with existing algorithms.

MSC:

49J53 Set-valued and variational analysis
65K10 Numerical optimization and variational techniques
49M37 Numerical methods based on nonlinear programming
90C25 Convex programming
47H10 Fixed-point theorems

Software:

iPiasco
Full Text: DOI

References:

[1] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point al-gorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14(2003), no. 3, 773-782. · Zbl 1079.90096
[2] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9(2001), no. 1 and 2, 3-11. · Zbl 0991.65056
[3] H. Attouch, M.O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with nonisolated equilibria, J. Differ. Equ., 179(2002), no. 1, 278-310. · Zbl 1007.34049
[4] H. Attouch, X. Goudon, P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math., 2(2000), no. 1, 1-34. · Zbl 0983.37016
[5] H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24(2014), no. 1, 232-256. · Zbl 1295.90044
[6] H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38(1996), no. 3, 367-426. · Zbl 0865.47039
[7] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse prob-lems, SIAM J. Imaging Sci., 2(2009), no. 1, 183-202. · Zbl 1175.94009
[8] R.I. Bot, E.R. Csetnek, An inertial alternating direction method of multipliers, Mini Max The-ory Appl., 1(2016), no. 1, 29-49. · Zbl 1337.90082
[9] R.I. Bot, E.R. Csetnek, An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algorithms, 71(2016), no. 3, 519-540. · Zbl 1338.47076
[10] R.I. Bot, E.R. Csetnek, C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclu-sion, Appl. Math. Comput., 256(2015), no. 1, 472-487. · Zbl 1338.65145
[11] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA, 53(1965), no. 6, 1272-1276. · Zbl 0125.35801
[12] C.L. Byrne, Bregman-Legendre multidistance projection algorithms for convex feasibility and optimization, Inherently Parallel Algorithms in Feasibility and Optimization and their Applica-tions, D. Butnairu, Y. Censor, S. Reich (eds.), Amsterdam: Elsevier, (2001), 87-100.
[13] C.L. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem inverse problems, 18(2002), no. 2, 441-53. · Zbl 0996.65048
[14] C.L. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20(2004), no. 1, 103-120. · Zbl 1051.65067
[15] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51(2006), no. 10, 2353-2365.
[16] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8(1994), no. 2, 221-239. · Zbl 0828.65065
[17] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21(2005), no. 6, 2071-2084. · Zbl 1089.65046
[18] Y. Censor, A. Motova, A. Segal, Perturbed projections and subgradient projections for the multiple sets split feasibility problem, J. Math. Anal. Appl., 327(2007), no. 2, 1244-1256. · Zbl 1253.90211
[19] C. Chen, R.H. Chan, S. Ma, J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8(2015), no. 4, 2239-2267. · Zbl 1328.65134
[20] C.-S. Chuang, Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications, Optimization, 66(2017), no. 5, 777-792. · Zbl 1373.49017
[21] M. Fukushima, A relaxed projection method for variational inequalities, Math. Program., 35(1986), no. 1, 58-70. · Zbl 0598.49024
[22] A. Gibali, L.W. Liu, Y.C. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., 12(2017), no. 4, 1-14.
[23] K. Goebel, W.A. Kirk, Topics on Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. · Zbl 0708.47031
[24] F. Iutzeler, J.M. Hendrickx, A generic online acceleration scheme for optimization algorithms via relaxation and inertia, Optim. Methods Softw., 34(2019), no. 2, 383-405. · Zbl 1407.65062
[25] F. Iutzeler, J. Malick, On the proximal gradient algorithm with alternated inertia, J. Optim. Theory Appl., 176(2018), no. 3, 688-710. · Zbl 06872632
[26] S. Kesornprom, N. Pholasal, P. Cholamjiak, On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem, Numer. Algor., 84(2020), no. 3, 997-1017. · Zbl 1459.65073
[27] G. López, V. Marti-Márquez, F. Wang, H.K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28(2012), no. 8, 085004. · Zbl 1262.90193
[28] D.A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51(2015), no. 2, 311-325. · Zbl 1327.47063
[29] P.E. Maingé, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl., 344(2008), no. 2, 876-887. · Zbl 1146.47042
[30] Y. Malitsky, T. Pock, A first-order primal-dual algorithm with linesearch, SIAM J. Optim., 28(2018), no. 1, 411-432. · Zbl 1390.49033
[31] Z. Mu, Y. Peng, A note on the inertial proximal point method, Stat. Optim. Inf. Comput., 3(2015), no. 3, 241-248.
[32] P. Ochs, T. Brox, T. Pock, iPiasco: inertial proximal algorithm for strongly convex optimization, J. Math. Imaging Vis., 53(2015), no. 2, 171-181. · Zbl 1327.90219
[33] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), no. 4, 591-597. · Zbl 0179.19902
[34] B.T. Polyak, Some methods of speeding up the convergence of iterative methods, Z. Vychisl. Mat. Mat. Fiz., 4(1964), no. 5, 791-803. · Zbl 0147.35301
[35] Y. Shehu, A. Gibali, New inertial relaxed method for solving split feasibilities, Optim. Lett., 15(2021), no. 6, 2109-2126. · Zbl 1475.90061
[36] Y. Shehu, O.S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19(2017), no. 4, 2483-2510. · Zbl 1493.47100
[37] S. Suantai, N. Pholasa, P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., 14(2018), no. 4, 1595-1615.
[38] S. Suantai, N. Pholasa, P. Cholamjiak, Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, RACSAM, 13(2019), no. 2, 1081-1099. · Zbl 1461.47035
[39] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178(1993), no. 2, 301-308. · Zbl 0895.47048
[40] Y. Tang, C. Zhu, H. Yu, Iterative methods for solving the multiple-sets split feasibility problem with splitting self-adaptive step size, Fixed Point Theory Appl., 2015(2015), 178. · Zbl 1338.90309
[41] R. Tibshirani, Regression shrinkage and selection via the LASSO, J.R. Stat. Soc. Ser.B, Stat. Methodol., 58(1996), no. 1, 267-288. · Zbl 0850.62538
[42] F. Wang, A splitting-relaxed projection method for solving the split feasibility problem, Fixed Point Theory, 14(2013), no. 1, 211-218. · Zbl 1295.47097
[43] X. Wang, J. Zhao, D. Hou, Modified relaxed CQ iterative algorithms for the Split feasibility problem, Mathematics, 7(2019), no. 1, 119.
[44] Q.Z. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, 20(2004), no. 4, 1261-1266. · Zbl 1066.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.