×

Networks with nonordered partitioning of players: stability and efficiency with neighborhood-influenced cost topology. (English) Zbl 07877935

Summary: This paper highlights the incentives of individuals to add or sever links in shaping stable and efficient networks when the society is partitioned into groups. In terms of the group partitioning, the players may unequally pay for the link connecting them. To be precise, the cost a player pays for her direct connection is determined by the composition of her neighborhood. In particular, the more members of a group the player has in her neighborhood, the less the average cost of a link is within this group. The main contributions of our paper lie in a detailed analysis of conditions under which particular network configurations – complete network, majority complete network, and complete bipartite network – achieve stability and unique efficiency. The paper examines the impact of the distribution of players across different groups on the stability and efficiency of these networks. We prove that majority complete networks can never be uniquely efficient when there is an equal number of players between two groups, but if they are efficient, the other two types of structures also attain efficiency. Moreover, under certain distributions of players, the unique stability of majority complete networks implies their unique efficiency.

MSC:

90Cxx Mathematical programming
Full Text: DOI

References:

[1] Bala, V.; Goyal, S., A noncooperative model of network formation, Econometrica, 68, 5, 1181-1229, 2000 · Zbl 1022.91047 · doi:10.1111/1468-0262.00155
[2] Billand, P.; Bravard, C.; Sarangi, S., Existence of Nash networks and partner heterogeneity, Math Soc Sci, 64, 2, 152-158, 2012 · Zbl 1248.91008 · doi:10.1016/j.mathsocsci.2012.01.001
[3] Bloch, F.; Dutta, B., Communication networks with endogenous link strength, Games Econ Behav, 66, 1, 39-56, 2009 · Zbl 1161.91477 · doi:10.1016/j.geb.2008.03.007
[4] Bloch, F.; Jackson, MO, Definitions of equilibrium in network formation games, Int J Game Theory, 34, 3, 305-318, 2006 · Zbl 1178.91033 · doi:10.1007/s00182-006-0022-9
[5] Breton, M.; Fredj, K.; Zaccour, G., International cooperation, coalitions stability and free riding in a game of pollution control, Manch Sch, 74, 1, 103-122, 2006 · doi:10.1111/j.1467-9957.2006.00485.x
[6] Calvó-Armengol, A., Job contact networks, J Econ Theory, 115, 1, 191-206, 2004 · Zbl 1063.91055 · doi:10.1016/S0022-0531(03)00250-3
[7] Currarini, S.; Matheson, J.; Vega-Redondo, F., A simple model of homophily in social networks, Eur Econ Rev, 90, 18-39, 2016 · doi:10.1016/j.euroecorev.2016.03.011
[8] De Marti, J.; Zenou, Y., Segregation in friendship networks, Scand J Econ, 119, 656-708, 2017 · Zbl 1397.91525 · doi:10.1111/sjoe.12178
[9] Dutta, B.; Mutuswami, S., Stable networks, J Econ Theory, 76, 322-344, 1997 · Zbl 0893.90043 · doi:10.1006/jeth.1997.2306
[10] Galeotti, A., One-way flow networks: the role of heterogeneity, Econ Theory, 29, 1, 163-179, 2006 · Zbl 1097.91021 · doi:10.1007/s00199-005-0015-0
[11] Galeotti, A.; Goyal, S.; Kamphorst, J., Network formation with heterogeneous players, Games Econ Behav, 54, 2, 353-372, 2006 · Zbl 1125.91006 · doi:10.1016/j.geb.2005.02.003
[12] Goeree, JK; Riedl, A.; Ule, A., In search of stars: network formation among heterogeneous agents, Games Econ Behav, 67, 2, 445-466, 2009 · Zbl 1188.91052 · doi:10.1016/j.geb.2008.12.005
[13] Groot, F.; Withagen, C.; de Zeeuw, A., Strong time-consistency in the cartel-versus-fringe model, J Econ Dyn Control, 28, 2, 287-306, 2003 · Zbl 1179.91090 · doi:10.1016/S0165-1889(02)00154-9
[14] Jackson, MO; Demange, G.; Wooders, M., A survey of models of network formation: stability and efficiency, Group formation in economics; networks, clubs and coalitions, 2004, Cambridge: Cambridge University Press, Cambridge
[15] Jackson, MO; Watts, A., The evolution of social and economic networks, J Econ Theory, 106, 2, 265-295, 2002 · Zbl 1099.91543 · doi:10.1006/jeth.2001.2903
[16] Jackson, MO; Wolinsky, A., A strategic model of social and economic networks, J Econ Theory, 71, 44-74, 1996 · Zbl 0871.90144 · doi:10.1006/jeth.1996.0108
[17] König, MD; Battiston, S.; Napoletano, M.; Schweitzer, F., The efficiency and stability of R &D networks, Games Econ Behav, 75, 2, 694-713, 2012 · Zbl 1239.90042 · doi:10.1016/j.geb.2011.12.007
[18] Möhlmeier, P.; Rusinowska, A.; Tanimura, E., A degree-distance-based connections model with negative and positive externalities, J Public Econ Theory, 18, 2, 168-192, 2016 · doi:10.1111/jpet.12183
[19] Möhlmeier, P.; Rusinowska, A.; Tanimura, E., Competition for the access to and use of information in networks, Math Soc Sci, 92, 48-63, 2018 · Zbl 1397.91530 · doi:10.1016/j.mathsocsci.2017.09.006
[20] Sun, P.; Parilina, E., Impact of utilities on the structures of stable networks with ordered group partitioning, Dyn Games Appl, 12, 4, 1131-1162, 2022 · Zbl 1505.91302 · doi:10.1007/s13235-022-00429-z
[21] Westbrock, B., Natural concentration in industrial research collaboration, Rand J Econ, 41, 2, 351-371, 2010 · doi:10.1111/j.1756-2171.2010.00103.x
[22] Zachary, WW, An information flow model for conflict and fission in small groups, J Anthropol Res, 33, 4, 452-473, 1977 · doi:10.1086/jar.33.4.3629752
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.