×

Uniqueness when the \(L_p\) curvature is close to be a constant for \(p\in[0, 1)\). (English) Zbl 07873545

Summary: For fixed positive integer \(n\), \(p\in [0, 1)\), \(a\in(0, 1)\), we prove that if a function \(g: \mathbb{S}^{n-1}\rightarrow\mathbb{R}\) is sufficiently close to 1, in the \(C^a\) sense, then there exists a unique convex body \(K\) whose \(L_p\) curvature function equals \(g\). This was previously established for \(n = 3\), \(p = 0\) by S. Chen et al. [Adv. Math. 411, Part A, Article ID 108782, 18 p. (2022; Zbl 1509.52006)] and in the symmetric case by S. Chen et al. [Adv. Math. 368, Article ID 107166, 20 p. (2020; Zbl 1440.52013)]. Related, we show that if \(p = 0\) and \(n = 4\) or \(n \leq 3\) and \(p\in[0, 1)\), and the \(L_p\) curvature function \(g\) of a (sufficiently regular, containing the origin) convex body \(K\) satisfies \(\lambda^{-1} \leq g \leq \lambda\), for some \(\lambda > 1\), then \(\max_{x\in\mathbb{S}^{n-1}}h_K(x) \leq C(p, \lambda)\), for some constant \(C(p, \lambda) > 0\) that depends only on \(p\) and \(\lambda\). This also extends a result from C. Chen and L. Xu [Adv. Math. 411, Part A, Article ID 108794, 27 p. (2022; Zbl 1505.35167)]. Along the way, we obtain a result, that might be of independent interest, concerning the question of when the support of the \(L_p\) surface area measure is lower dimensional. Finally, we establish a strong non-uniqueness result for the \(L_p\)-Minkowksi problem, for \(-n < p < 0\).

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A38 Length, area, volume and convex sets (aspects of convex geometry)
52A39 Mixed volumes and related topics in convex geometry

References:

[1] Andrews, B., Gauss curvature flow: the fate of rolling stone, Invent. Math., 138, 151-161, 1999 · Zbl 0936.35080 · doi:10.1007/s002220050344
[2] Andrews, B.; Guan, P.; Ni, L., Flow by the power of the Gauss curvature, Adv. Math., 299, 174-201, 2016 · Zbl 1401.35159 · doi:10.1016/j.aim.2016.05.008
[3] Barthe, F.; Guédon, O.; Mendelson, S.; Naor, A., A probabilistic approach to the geometry of the \(l_p^n\)-ball, Ann. of Probability, 33, 480-513, 2005 · Zbl 1071.60010 · doi:10.1214/009117904000000874
[4] Bianchi, G.; Böröczky, KJ; Colesanti, A.; Yang, D., The \(L_p\)-Minkowski problem for \(-n< p<1\) according to Chou-Wang, Adv. Math., 341, 493-535, 2019 · Zbl 1406.52016 · doi:10.1016/j.aim.2018.10.032
[5] Böröczky, K.J.: The Logarithmic Minkowski conjecture and the \(L_p\)-Minkowski Problem. In: Harmonic analysis and convexity, De Gruyter, Berlin, 83-118 (2023). arxiv:2210.00194 · Zbl 1525.35156
[6] Böröczky, KJ; Kalantzopoulos, P., Log-Brunn-Minkowski inequality under symmetry, Trans. AMS, 375, 5987-6013, 2022 · Zbl 1504.52006
[7] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., The log-Brunn-Minkowski-inequality, Adv. Math., 231, 1974-1997, 2012 · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015
[8] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., The Logarithmic Minkowski Problem, J. Am. Math. Soc., 26, 831-852, 2013 · Zbl 1272.52012 · doi:10.1090/S0894-0347-2012-00741-3
[9] Brendle, S.; Choi, K.; Daskalopoulos, P., Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math., 219, 1-16, 2017 · Zbl 1385.53054 · doi:10.4310/ACTA.2017.v219.n1.a1
[10] Chen, S.; Feng, Y.; Liu, W., Uniqueness of solutions to the logarithmic Minkowski problem in \({\mathbb{R} }^3\), Adv. Math., 411, A, 108782, 2022 · Zbl 1509.52006 · doi:10.1016/j.aim.2022.108782
[11] Chen, S., Hu, S., Liu, W., Zhao, Y.: On the planar Gaussian-Minkowski problem. arXiv:2303.17389
[12] Chen, S.; Huang, Y.; Li, Q-R; Liu, J., The \(L_p\)-Brunn-Minkowski inequality for \(p<1\), Adv. Math., 368, 107166, 2020 · Zbl 1440.52013 · doi:10.1016/j.aim.2020.107166
[13] Chen, H., Li, Q-R.: The \(L_p\) dual Minkowski problem and related parabolic flows. J. Funct. Anal. 281 (2021), Paper No. 109139, 65 pp · Zbl 1469.35115
[14] Chen, S.; Li, Q-R; Zhu, G., On the \(L_p\) Monge-Ampère equation, J. Differ. Equ., 263, 4997-5011, 2017 · Zbl 1388.35047 · doi:10.1016/j.jde.2017.06.007
[15] Chen, S.; Li, Q-R; Zhu, G., The Logarithmic Minkowski Problem for non-symmetric measures, Trans. Amer. Math. Soc., 371, 2623-2641, 2019 · Zbl 1406.52018 · doi:10.1090/tran/7499
[16] Chou, KS; Wang, XJ, The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205, 33-83, 2006 · Zbl 1245.52001 · doi:10.1016/j.aim.2005.07.004
[17] Colesanti, A.; Livshyts, G.; Marsiglietti, A., On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal., 273, 1120-1139, 2017 · Zbl 1369.52013 · doi:10.1016/j.jfa.2017.04.008
[18] Colesanti, A., Livshyts, G.: A note on the quantitative local version of the log-Brunn-Minkowski inequality. The mathematical legacy of Victor Lomonosov-operator theory, 85-98, Adv. Anal. Geom., 2, De Gruyter, Berlin, (2020) · Zbl 1473.52016
[19] De Philippis, G., Alessio Figalli: The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc., 51, 527-580, 2014 · Zbl 1515.35005 · doi:10.1090/S0273-0979-2014-01459-4
[20] Du, S-Z, On the planar \(L_p\)-Minkowski problem, Jour. Diff. Equ., 287, 37-77, 2021 · Zbl 1465.35153 · doi:10.1016/j.jde.2021.03.035
[21] Feng, Y.; Hu, S.; Xu, L., On the \(L_p\) Gaussian Minkowski problem, J. Differ. Equ., 363, 350-390, 2023 · Zbl 1514.35182 · doi:10.1016/j.jde.2023.03.026
[22] Feng, Y., Liu, W., Xu, L.: Existence of non-symmetric solutions to the Gaussian Minkowski problem. J. Geom. Anal., 33(3), Paper No. 89, 39 pp (2023) · Zbl 1506.35110
[23] Firey, WJ, Shapes of worn stones, Mathematika, 21, 1-11, 1974 · Zbl 0311.52003 · doi:10.1112/S0025579300005714
[24] Gardner, R., Hug, D., Weil, W., Xing, S., Ye, D.: General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I. Calc. Var. Part. Differ. Equ. 58, Paper No. 12, 35 pp (2019) · Zbl 1404.52004
[25] Gardner, R., Hug, D., Xing, S., Ye, D.: General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II. Calc. Var. Partial Differential Equations 59, Paper No. 15, 33 pp (2020) · Zbl 1430.52001
[26] Gromov, M.; Milman, VD, Generalization of the spherical isoperimetric inequality for uniformly convex Banach Spaces, Composito Math., 62, 263-282, 1987 · Zbl 0623.46007
[27] Guang, Q., Li, Q-R., Wang, X.-J.: The \(L_p\)-Minkowski problem with super-critical exponents. arXiv:2203.05099
[28] Guang, Q., Li, Q-R., Wang, X.-J.: Flow by Gauss curvature to the \(L_p\) dual Minkowski problem. Math. Eng. 5(3), Paper No. 049, 19 pp (2023) · Zbl 1540.53113
[29] Hu, Y., Ivaki, M.N.: Stability of the Cone-volume measure with near constant density. preprint
[30] Huang, Y.; Lu, Q., On the regularity of the \(L_p\) Minkowski problem, Adv. in Appl. Math., 50, 268-280, 2013 · Zbl 1278.35119 · doi:10.1016/j.aam.2012.08.005
[31] Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G., Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216, 325-388, 2016 · Zbl 1372.52007 · doi:10.1007/s11511-016-0140-6
[32] Huang, Y.; Xi, D.; Zhao, Y., The Minkowski problem in Gaussian probability space, Adv. Math., 385, 107769, 2021 · Zbl 1466.52010 · doi:10.1016/j.aim.2021.107769
[33] Huang, Y.; Zhao, Y., On the Lp dual Minkowski problem, Adv. Math., 332, 57-84, 2018 · Zbl 1393.52007 · doi:10.1016/j.aim.2018.05.002
[34] Hug, D., Contributions to affine surface area, Manuscripta Math., 91, 283-301, 1996 · Zbl 0871.52004 · doi:10.1007/BF02567955
[35] Hug, D.; Lutwak, E.; Yang, D.; Zhang, G., On the \(L_p\) Minkowski problem for polytopes, Discrete Comput. Geom., 33, 699-715, 2005 · Zbl 1078.52008 · doi:10.1007/s00454-004-1149-8
[36] Ivaki, MN, On the stability of the \(L_p\)-curvature, JFA, 283, 109684, 2022 · Zbl 1497.52004 · doi:10.1016/j.jfa.2022.109684
[37] Ivaki, M.N., Milman, E.: Uniqueness of solutions to a class of isotropic curvature problems. Adv. Math., 435, part A, Paper No. 109350, 11 pp (2023) · Zbl 1532.35004
[38] Ivaki, M.N., Milman, E.: \(L^p\)-Minkowski Problem under Curvature Pinching. Int. Math. Res. Not., IMRN, accepted. arXiv:2307.16484
[39] Jian, H.; Lu, J.; Wang, X-J, Nonuniqueness of solutions to the \(L_p\)-Minkowski problem, Adv. Math., 281, 845-856, 2015 · Zbl 1326.35009 · doi:10.1016/j.aim.2015.05.010
[40] Kolesnikov, AV, Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem, Mosc. Math. J., 20, 67-91, 2020 · Zbl 1460.49037 · doi:10.17323/1609-4514-2020-20-1-67-91
[41] Kolesnikov, A.V., Livshyts, G.V.: On the Local version of the Log-Brunn-Minkowski conjecture and some new related geometric inequalities. Int. Math. Res. Not. IMRN, (18), 14427-14453 (2022) · Zbl 1497.52014
[42] Kolesnikov, A.V., Milman, E.: Local \(L_p\)-Brunn-Minkowski inequalities for \(p<1\). Mem. Am. Math. Soc. 277(1360), (2022)
[43] Kuperberg, G., From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal., 18, 870-892, 2008 · Zbl 1169.52004 · doi:10.1007/s00039-008-0669-4
[44] Li, H., Wan, Y.: Classification of solutions for the planar isotropic \(L_p\) dual Minkowski problem. arXiv:2209.14630
[45] Li, Q-R., Liu, J., Lu, J.: Non-uniqueness of solutions to the dual \(L_p\)-Minkowski problem. IMRN, 9114-9150 (2022) · Zbl 1491.35259
[46] Liu, J.: The \(L_p\)-Gaussian Minkowski problem. Calc. Var. Partial Differential Equations 61, Paper No. 28, 23 pp (2022) · Zbl 1480.52006
[47] Livshyts, G.; Marsiglietti, A.; Nayar, P.; Zvavitch, A., On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Amer. Math. Soc., 369, 12, 8725-8742, 2017 · Zbl 1376.52014 · doi:10.1090/tran/6928
[48] Fangxia, Lu; Zhaonian, Pu, The \(L_p\) dual Minkowski problem about \(0<p<1\) and \(q>0\), Open Math., 19, 1648-1663, 2021 · Zbl 1487.52007 · doi:10.1515/math-2021-0118
[49] Ludwig, M., General affine surface areas, Adv. Math., 224, 2346-2360, 2010 · Zbl 1198.52004 · doi:10.1016/j.aim.2010.02.004
[50] Lutwak, E., Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60, 365-391, 1990 · Zbl 0703.52005 · doi:10.1112/plms/s3-60.2.365
[51] Lutwak, E.: Selected affine isoperimetric inequalities. In: Handbook of convex geometry, North-Holland, Amsterdam, 151-176 (1993) · Zbl 0847.52006
[52] Lutwak, E., The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38, 131-150, 1993 · Zbl 0788.52007 · doi:10.4310/jdg/1214454097
[53] Lutwak, E.; Yang, D.; Zhang, G., \(L_p\) dual curvature measures, Adv. Math., 329, 85-132, 2018 · Zbl 1388.52003 · doi:10.1016/j.aim.2018.02.011
[54] Milman, E.: A sharp centro-affine isospectral inequality of Szegő-Weinberger type and the \(L_p\)-Minkowski problem. J. Diff. Geom., accepted. arXiv:2103.02994
[55] Milman, E.: Centro-Affine Differential Geometry and the Log-Minkowski Problem. arXiv:2104.12408
[56] Naor, A., The surface measure and cone measure on the sphere of \(l^n_p\), Trans. Amer. Math. Soc., 359, 1045-1079, 2007 · Zbl 1109.60006 · doi:10.1090/S0002-9947-06-03939-0
[57] Paouris, G.; Werner, E., Relative entropy of cone measures and \(L_p\) centroid bodies, Proc. London Math. Soc., 104, 253-286, 2012 · Zbl 1246.52008 · doi:10.1112/plms/pdr030
[58] Saroglou, C., Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata., 177, 353-365, 2015 · Zbl 1326.52010 · doi:10.1007/s10711-014-9993-z
[59] Saroglou, C., More on logarithmic sums of convex bodies, Mathematika, 62, 818-841, 2016 · Zbl 1352.52001 · doi:10.1112/S0025579316000061
[60] Saroglou, C., On a non-homogeneous version of a problem of Firey, Math. Ann., 382, 1059-1090, 2022 · Zbl 1537.35195 · doi:10.1007/s00208-021-02225-3
[61] Saroglou, C.: A non-existence result for the \(L_p\)-Minkowski problem. Proc. AMS, accepted. arXiv:2109.06545
[62] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press (2014) · Zbl 1287.52001
[63] Stancu, A., The discrete planar \(L_0\)-Minkowski problem, Adv. Math., 167, 160-174, 2002 · Zbl 1005.52002 · doi:10.1006/aima.2001.2040
[64] Stancu, A., On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem, Adv. Math., 180, 290-323, 2003 · Zbl 1054.52001 · doi:10.1016/S0001-8708(03)00005-7
[65] Stancu, A.: Prescribing centro-affine curvature from one convex body to another. Int. Math. Res. Not. IMRN, 1016-1044 (2022) · Zbl 1515.52003
[66] van Handel, R.: The local logarithmic Brunn-Minkowski inequality for zonoids. In: Geom. Aspects of Funct. Anal., Lecture Notes in Mathematics 2327, Springer, 355-379 (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.