×

Flow by powers of the Gauss curvature. (English) Zbl 1401.35159

The authors prove that convex hypersurfaces in \(\mathbb{R}^{n+1}\) contracting under the flow by any power \(\alpha>\frac{1}{n+2}\) of the Gauss curvature converge after rescaling to fixed volume to a limit which is a smooth uniformly self-similar contracting solution of the flow. Under additional central symmetry assumption on the initial body, they show that the limit is the round sphere for any \(\alpha\geq 1\).

MSC:

35K55 Nonlinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
53A05 Surfaces in Euclidean and related spaces

References:

[1] Alvarez, L.; Guichard, F.; Lions, P.-L.; Morel, J.-M., Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal., 123, 3, 199-257 (1993), MR1225209 (94j:68306) · Zbl 0788.68153
[2] Andrews, B., Harnack inequalities for evolving hypersurfaces, Math. Z., 217, 2, 179-197 (1994), MR1296393 (95j:58178) · Zbl 0807.53044
[3] Andrews, B., Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., 43, 2, 207-230 (1996), MR1424425 (97m:58045) · Zbl 0858.53005
[4] Andrews, B., Monotone quantities and unique limits for evolving convex hypersurfaces, Int. Math. Res. Not. IMRN, 20, 1001-1031 (1997), MR1486693 (99a:58041) · Zbl 0892.53002
[5] Andrews, B., Evolving convex curves, Calc. Var. Partial Differential Equations, 7, 4, 315-371 (1998), MR1660843 (99k:58038) · Zbl 0931.53030
[6] Andrews, B., Gauss curvature flow: the fate of the rolling stones, Invent. Math., 138, 1, 151-161 (1999), MR1714339 (2000i:53097) · Zbl 0936.35080
[7] Andrews, B., Motion of hypersurfaces by Gauss curvature, Pacific J. Math., 195, 1, 1-34 (2000), MR1781612 (2001i:53108) · Zbl 1028.53072
[8] Andrews, B., Non-convergence and instability in the asymptotic behaviour of curves evolving by curvature, Comm. Anal. Geom., 10, 2, 409-449 (2002), MR1900758 (2003e:53086) · Zbl 1029.53079
[9] Andrews, B., Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16, 2, 443-459 (2003), (electronic), MR1949167 (2004a:53083) · Zbl 1023.53051
[10] Andrews, B.; Chen, X., Surfaces moving by powers of Gauss curvature, Pure Appl. Math. Q., 8, 4, 825-834 (2012), MR2959911 · Zbl 1263.53058
[11] Andrews, B.; McCoy, J.; Zheng, Y., Contracting convex hypersurfaces by curvature, Calc. Var. Partial Differential Equations, 47, 3-4, 611-665 (2013), MR3070558 · Zbl 1288.35292
[12] Blaschke, W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellung mit besonderer Berücksichtigung der Anwendungsgebiete, vol. VII (1923), Springer: Springer Berlin · JFM 49.0499.01
[13] Bonnesen, T.; Fenchel, W., Theory of Convex Bodies (1987), BCS Associates: BCS Associates Moscow, Idaho, USA, MR0920366 · Zbl 0628.52001
[14] Calabi, E., Complete affine hyperspheres. I, (Symposia Mathematica, vol. X. Symposia Mathematica, vol. X, Convegno di Geometria Differenziale, INDAM, Rome, 1971 (1972), Academic Press: Academic Press London), 19-38, MR0365607 (51 #1859) · Zbl 0252.53008
[15] Caselles, V.; Sbert, C., What is the best causal scale space for three-dimensional images?, SIAM J. Appl. Math., 56, 4, 1199-1246 (1996), MR1398415 (97e:68142) · Zbl 0854.68115
[16] Chou, K.-S.; Zhu, X.-P., The Curve Shortening Problem (2001), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL, MR1888641 (2003e:53088) · Zbl 1061.53045
[17] Chow, B., Deforming convex hypersurfaces by the \(n\) th root of the Gaussian curvature, J. Differential Geom., 22, 1, 117-138 (1985), MR826427 (87f:58155) · Zbl 0589.53005
[18] Chow, B., On Harnack’s inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., 44, 4, 469-483 (1991), MR1100812 (93e:58032) · Zbl 0734.53035
[19] Firey, W. J., Shapes of worn stones, Mathematika, 21, 1-11 (1974), MR0362045 (50 #14487) · Zbl 0311.52003
[20] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224 (1983), Springer-Verlag: Springer-Verlag Berlin, MR737190 (86c:35035) · Zbl 0562.35001
[21] Guan, P.-F.; Ni, L., Entropy and a convergence theorem for Gauss curvature flow in high dimensions, J. Eur. Math. Soc. (JEMS) (2016), in press
[22] Hamilton, R. S., Remarks on the entropy and Harnack estimates for the Gauss curvature flow, Comm. Anal. Geom., 2, 1, 155-165 (1994), MR1312683 (96c:58041) · Zbl 0839.53050
[23] Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20, 1, 237-266 (1984), MR772132 (86j:53097) · Zbl 0556.53001
[24] Ivaki, M., Deforming a hypersurface by Gauss curvature and support function, preprint, available at · Zbl 1346.53060
[25] John, F., Extremum problems with inequalities as subsidiary conditions, (Studies and Essays Presented to R. Courant on His 60th Birthday, January 8, 1948 (1948), Interscience Publishers, Inc.: Interscience Publishers, Inc. New York, N.Y.), 187-204, MR0030135 (10,719b) · Zbl 0034.10503
[26] Jung, H., Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123, 241-257 (1901), (German), MR1580570 · JFM 32.0296.05
[27] Krylov, N. V., Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Ross. Akad. Nauk Ser. Mat., 47, 1, 75-108 (1983), (Russian), MR688919 (85g:35046)
[28] Lutwak, E., On some affine isoperimetric inequalities, J. Differential Geom., 23, 1, 1-13 (1986), MR840399 (87k:52030) · Zbl 0592.52005
[29] McCoy, J. A., Self-similar solutions of fully nonlinear curvature flows, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10, 2, 317-333 (2011), MR2856150 (2012g:53139) · Zbl 1234.53018
[30] Meyer, M.; Pajor, A., On the Blaschke-Santaló inequality, Arch. Math. (Basel), 55, 1, 82-93 (1990), MR1059519 (92b:52013) · Zbl 0718.52011
[31] Neskovic, P.; Kimia, B., Three-dimensional shape representation from curvature-dependent surface evolution (1993), Division of Engineering, Brown University, Technical report LEMS-128
[32] Santaló, L. A., An affine invariant for convex bodies of \(n\)-dimensional space, Port. Math., 8, 155-161 (1949), (Spanish), MR0039293 (12,526f) · Zbl 0038.35702
[33] Sapiro, G.; Tannenbaum, A., On invariant curve evolution and image analysis, Indiana Univ. Math. J., 42, 3, 985-1009 (1993), MR1254129 (94m:58048) · Zbl 0793.53002
[34] Sapiro, G.; Tannenbaum, A., Affine invariant scale-spaces, Int. J. Comput. Vis., 11, 25-44 (1993)
[35] Sapiro, G.; Tannenbaum, A., On affine plane curve evolution, J. Funct. Anal., 119, 1, 79-120 (1994), MR1255274 (94m:58049) · Zbl 0801.53008
[36] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 151 (2014), Cambridge University Press: Cambridge University Press Cambridge, MR3155183 · Zbl 1287.52001
[37] Smoczyk, K., Starshaped hypersurfaces and the mean curvature flow, Manuscripta Math., 95, 2, 225-236 (1998), MR1603325 (99c:53033) · Zbl 0903.53039
[38] Steinhagen, P., Über die größte Kugel in einer konvexen Punktmenge, Abh. Math. Semin. Univ. Hambg., 1, 1, 15-26 (1922), (German), MR3069385 · JFM 48.0837.03
[39] Tso, K., Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math., 38, 6, 867-882 (1985), MR812353 (87e:53009) · Zbl 0612.53005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.