×

Why does quantum field theory in curved spacetime make sense? And what happens to the algebra of observables in the thermodynamic limit? (English) Zbl 07857572

Ge, Mo-Lin (ed.) et al., Dialogues between physics and mathematics. C. N. Yang at 100. Cham: Springer. 241-284 (2022).
Summary: This article aims to explain some of the basic facts about the questions raised in the title, without the technical details that are available in the literature. We provide a gentle introduction to some rather classical results about quantum field theory in curved spacetime and about the thermodynamic limit of quantum statistical mechanics. We also briefly explain that these results have an analog in the large \(N\) limit of gauge theory.
For the entire collection see [Zbl 1515.81018].

MSC:

81Txx Quantum field theory; related classical field theories

References:

[1] B.S. DeWitt, Quantum field theory in curved spacetime. Phys. Rep. 19, 295-357 (1975)
[2] S.A. Fulling, M. Sweeny, R.M. Wald, Singularity structure of the two-point function in quantum field theory in curved spacetime. Commun. Math. Phys. 63, 257-264 (1978) · Zbl 0401.35065
[3] S.A. Fulling, F.J. Narcowich, R.M. Wald, Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. 136, 243-272 (1981) · Zbl 0495.35054
[4] n.d. Birrell, P.C.W. Davies, Quantum Fields In Curved Space (Cambridge University Press, 1982) · Zbl 0476.53017
[5] S.A. Fulling, Aspects of Quantum Field Theory in Curved Spacetime (Cambridge University Press, 1989) · Zbl 0677.53081
[6] B.S. Kay, The principle of locality and quantum field theory on (non globally hyperbolic) curved spacetimes. Rev. Math. Phys. 4, 167-195 (1992) · Zbl 0779.53052
[7] I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (Taylor & Francis, 1992)
[8] R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago, 1994) · Zbl 0842.53052
[9] R. Brunetti, K. Fredenhagen, R. Verch, The generally covariant locality principle - A new paradigm for local quantum field theory. arXiv:math-ph/0112041
[10] K. Fredenhagen, Locally covariant quantum field theory. arXiv:hep-th/0403007
[11] S. Hollands, R.M. Wald, Axiomatic quantum field theory in curved spacetime. arXiv:0803.2003
[12] C. Bar, K. Fredenhagen (eds.), Quantum Field Theory On Curved Spacetimes (Springer, 2009) · Zbl 1178.81003
[13] L. Parker, D. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, 2009) · Zbl 1180.81001
[14] C.J. Fewster, locally covariant quantum field theory and the problem of formulating the same physics in all spacetimes. Phil. Trans. R. Soc. A373, 20140238 (2015). arXiv:1502.04642 · Zbl 1353.81088
[15] H. Araki, Type of von Neumann algebra associated with free field. Prog. Theor. Phys. 5, 1-13 (1964) · Zbl 0151.44401
[16] K. Fredenhagen, On the modular structure of local algebras of observables. Commun. Math. Phys. 97, 79 (1985) · Zbl 0582.46067
[17] R. Haag, Local Quantum Physics (Springer, 1992) · Zbl 0777.46037
[18] J. Yngvason, The role of Type III factors in quantum field theory. arXiv:math-ph/0411058
[19] E. Witten, Some entanglement properties of quantum field theory. Rev. Mod. Phys. 90, 045003 (2018). arXiv:1803.04993
[20] R. Haag, N.M. Hugenholtz, M. Winnink, On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215-236 (1967) · Zbl 0171.47102
[21] E. Witten, Quantum field theory in curved spacetime. Lecture available at https://www.youtube.com/watch?v=8Wu4QhlznnY&t
[22] S. Leutheusser and H. Liu, Causal connectability between quantum systems and the black hole interior in holographic duality. arXiv:2110.05497
[23] E. Witten, Gravity and the crossed product. JHEP 10, 008 (2022). https://doi.org/10.1007/JHEP10(2022)008. arXiv:2112.12828 [hep-th] · Zbl 1534.83065
[24] M. Kontsevich, G.B. Segal, Wick rotation and the positivity of energy in quantum field theory. Quart. J. Math. 72, 673-99 (2021). arXiv:2105.10161 · Zbl 1471.81075
[25] J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570-578 (1931) · Zbl 0001.24703
[26] L. Gårding, A. Wightman, Representations of the commutation relations. Proc. NAS 40, 622-626 (1954) · Zbl 0057.09604
[27] G.L. Sewell, Quantum Mechanics and its Emergent Macrophysics (Princeton University Press, 2002) · Zbl 1007.82001
[28] H. Bostelmann, Operator product expansions as a consequence of phase space properties. arXiv:math-ph/0502004
[29] A. Ashtekar, Asymptotic Quantization (Bibliopolis, 1987)
[30] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory (Princeton University Press, 2018) · Zbl 1408.83003
[31] K. Prabhu, G. Satishchandran, R. Wald, Infrared finite scattering theory in quantum field theory and quantum gravity. Phys. Rev. D 106(6) (2022) 066005 https://doi.org/doi:10.1103/PhysRevD.106.066005. arXiv:2203.14334 [hep-th]
[32] J. von Neumann, On infinite direct products. Comp. Math. 6, 1-77 (1938) · Zbl 0019.31103
[33] R.T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math. 86, 138-171 (1967) · Zbl 0157.20605
[34] H. Araki, E.J. Woods, A classification of factors. Publ. RIMS Kyoto Univ. Ser. A 3, 51-130 (1968) · Zbl 0206.12901
[35] F.J. Murray, J. von Neumann, On rings of operators. Ann. Math. 37, 116-229 (1936) · Zbl 0014.16101
[36] W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D14, 870-892 (1976)
[37] J. Bisognano, E.H. Wichmann, On the duality condition for quantum fields. J. Math. Phys. 17, 303-321 (1976)
[38] G.L. Sewell, Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201-224 (1982)
[39] C. Holzhey, F. Larsen, F. Wilczek, Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B300, 44 (1994)
[40] P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P06002 (2004). arXiv:hep-th/0405152 · Zbl 1082.82002
[41] H. Casini, M. Huerta, Entanglement entropy for the \(n\)-sphere. Phys. Lett. B694, 167-171 (2011). arXiv:1007.1813
[42] H. Casini, M. Huerta, R.C. Myers, Towards a derivation of holographic entanglement entropy. JHEP 05, 036 (2011). arXiv:1102.0440 · Zbl 1296.81073
[43] I.E. Segal, A note on the concept of entropy. J. Math. Mech. 9, 623-629 (1960) · Zbl 0223.94001
[44] A. Connes, E. Størmer, Entropy for automorphisms of \(II_1\) von Neumann algebras. Acta. Math. 134, 289-306 (1975) · Zbl 0326.46032
[45] N. Cabibbo, G. Parisi, Exponential hadronic spectrum and quark liberation. Phys. Lett. B59, 67-69 (1975)
[46] A.M. Polyakov, Thermal properties of gauge fields and quark liberation. Phys. Lett. B72, 477-480 (1978)
[47] L. Susskind, Lattice models of quark confinement at high temperature. Phys. Rev. D20, 2610-2018 (1979)
[48] B. Sundborg, The Hagedorn transition, deconfinement, and \({\mathcal N}=4\) SYM theory. Nucl. Phys. B573, 349 (2000). arXiv:hep-th/9908001 · Zbl 0947.81126
[49] J. Hallin, D. Persson, Thermal phase transition in weakly interacting, large \(N_{}c\) QCD. Phys. Lett. B429, 232 (1998). arXiv:hep-th/9803224
[50] A.M. Polyakov, Gauge fields and space-time. Int. J. Mod. Phys. A17S1, 119 (2002) · Zbl 1025.83032
[51] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk, The Hagedorn/deconfinement phase transition in weakly coupled large \(N\) gauge theories. Phys. Rev. D74, 105012 (2006). arXiv:hep-th/0310285
[52] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk, A first order deconfinement transition in Yang-Mills theory on a small \(S^3\). Phys. Rev. D71, 125018 (2005). arXiv:hep-th/0502149
[53] S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti de Sitter space. Commun, Math. Phys. 87, 577-588 (1983)
[54] E. Witten, Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253-291 (1998). arXiv:hep-th/9802150 · Zbl 0914.53048
[55] C. Thorn, Infinite \(N_{}c\) QCD at finite temperature: Is there an ultimate temperature? Phys. Lett. B99, 458 (1981)
[56] J.M. Maldacena, Eternal black holes in anti de Sitter. JHEP 04, 021 (2003). arXiv:hep-th/0106112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.