×

The spine of the Fleming-Viot process driven by Brownian motion. (English) Zbl 07856571

The main result of the article consists of Theorem 4.1 which states that under certain conditions, the distributions of spines converge to distribution of Brownian motion, being conditioned to stay in a certain domain forever and having some initial distribution.
According to the abstract, the authors state “We show that the spine of the Fleming-Viot process driven by Brownian motion in a bounded Lipschitz domain with Lipschitz constant less than 1 converges to Brownian motion conditioned to stay in the domain forever.”

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J65 Brownian motion

References:

[1] BAÑUELOS, R. (1991). Intrinsic ultracontractivity and eigenfunction estimates for Schrödinger operators. J. Funct. Anal. 100 181-206. Digital Object Identifier: 10.1016/0022-1236(91)90107-G Google Scholar: Lookup Link MathSciNet: MR1124298 · Zbl 0766.47025 · doi:10.1016/0022-1236(91)90107-G
[2] BIENIEK, M. and BURDZY, K. (2018). The distribution of the spine of a Fleming-Viot type process. Stochastic Process. Appl. 128 3751-3777. Digital Object Identifier: 10.1016/j.spa.2017.12.003 Google Scholar: Lookup Link MathSciNet: MR3860009 · Zbl 1401.60060 · doi:10.1016/j.spa.2017.12.003
[3] BIENIEK, M., BURDZY, K. and FINCH, S. (2012). Non-extinction of a Fleming-Viot particle model. Probab. Theory Related Fields 153 293-332. Digital Object Identifier: 10.1007/s00440-011-0372-5 Google Scholar: Lookup Link MathSciNet: MR2925576 · Zbl 1253.60089 · doi:10.1007/s00440-011-0372-5
[4] BIENIEK, M., BURDZY, K. and PAL, S. (2012). Extinction of Fleming-Viot-type particle systems with strong drift. Electron. J. Probab. 17 no. 11. Digital Object Identifier: 10.1214/EJP.v17-1770 Google Scholar: Lookup Link MathSciNet: MR2878790 · Zbl 1258.60031 · doi:10.1214/EJP.v17-1770
[5] BURDZY, K., ENGLÄNDER, J. and MARSHALL, D. E. (2023). The spine of two-particle Fleming-Viot process in a bounded interval. Preprint. Available at arXiv:2308.14290.
[6] BURDZY, K., HOŁYST, R. and MARCH, P. (2000). A Fleming-Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214 679-703. Digital Object Identifier: 10.1007/s002200000294 Google Scholar: Lookup Link MathSciNet: MR1800866 · Zbl 0982.60078 · doi:10.1007/s002200000294
[7] BURDZY, K. and SALISBURY, T. S. (1999). On minimal parabolic functions and time-homogeneous parabolic \(h\)-transforms. Trans. Amer. Math. Soc. 351 3499-3531. Digital Object Identifier: 10.1090/S0002-9947-99-02471-X Google Scholar: Lookup Link MathSciNet: MR1661309 · Zbl 0926.31005 · doi:10.1090/S0002-9947-99-02471-X
[8] BURDZY, K. and TADIĆ, T. (2021). On the spine of two-particle Fleming-Viot process driven by Brownian motion. Preprint. Available at arXiv:2111.07968.
[9] BURKHOLDER, D. L. (1977). Exit times of Brownian motion, harmonic majorization, and Hardy spaces. Adv. Math. 26 182-205. Digital Object Identifier: 10.1016/0001-8708(77)90029-9 Google Scholar: Lookup Link MathSciNet: MR0474525 · Zbl 0372.60112 · doi:10.1016/0001-8708(77)90029-9
[10] Chaumont, L. and Uribe Bravo, G. (2011). Markovian bridges: Weak continuity and pathwise constructions. Ann. Probab. 39 609-647. Digital Object Identifier: 10.1214/10-AOP562 Google Scholar: Lookup Link MathSciNet: MR2789508 · Zbl 1217.60066 · doi:10.1214/10-AOP562
[11] DAVIES, E. B. and SIMON, B. (1984). Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59 335-395. Digital Object Identifier: 10.1016/0022-1236(84)90076-4 Google Scholar: Lookup Link MathSciNet: MR0766493 · Zbl 0568.47034 · doi:10.1016/0022-1236(84)90076-4
[12] DEPPERSCHMIDT, A., GREVEN, A. and PFAFFELHUBER, P. (2012). Tree-valued Fleming-Viot dynamics with mutation and selection. Ann. Appl. Probab. 22 2560-2615. Digital Object Identifier: 10.1214/11-AAP831 Google Scholar: Lookup Link MathSciNet: MR3024977 · Zbl 1316.92048 · doi:10.1214/11-AAP831
[13] Donnelly, P. and Kurtz, T. G. (1996). A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24 698-742. Digital Object Identifier: 10.1214/aop/1039639359 Google Scholar: Lookup Link MathSciNet: MR1404525 · Zbl 0869.60074 · doi:10.1214/aop/1039639359
[14] DOOB, J. L. (1984). Classical Potential Theory and Its Probabilistic Counterpart. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 262. Springer, New York. Digital Object Identifier: 10.1007/978-1-4612-5208-5 Google Scholar: Lookup Link MathSciNet: MR0731258 · Zbl 0549.31001 · doi:10.1007/978-1-4612-5208-5
[15] ENGLÄNDER, J. and KYPRIANOU, A. E. (2004). Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 78-99. Digital Object Identifier: 10.1214/aop/1078415829 Google Scholar: Lookup Link MathSciNet: MR2040776 · Zbl 1056.60083 · doi:10.1214/aop/1078415829
[16] Etheridge, A. M. (2000). An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI. Digital Object Identifier: 10.1090/ulect/020 Google Scholar: Lookup Link MathSciNet: MR1779100 · Zbl 0971.60053 · doi:10.1090/ulect/020
[17] EVANS, S. N. (1993). Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 959-971. Digital Object Identifier: 10.1017/S0308210500029619 Google Scholar: Lookup Link MathSciNet: MR1249698 · Zbl 0784.60052 · doi:10.1017/S0308210500029619
[18] FABES, E. B., GAROFALO, N. and SALSA, S. (1986). A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Illinois J. Math. 30 536-565. MathSciNet: MR0857210 · Zbl 0625.35006
[19] GREVEN, A., LIMIC, V. and WINTER, A. (2005). Representation theorems for interacting Moran models, interacting Fisher-Wright diffusions and applications. Electron. J. Probab. 10 1286-1356. Digital Object Identifier: 10.1214/EJP.v10-290 Google Scholar: Lookup Link MathSciNet: MR2176385 · Zbl 1109.60082 · doi:10.1214/EJP.v10-290
[20] Greven, A., Pfaffelhuber, P. and Winter, A. (2013). Tree-valued resampling dynamics martingale problems and applications. Probab. Theory Related Fields 155 789-838. Digital Object Identifier: 10.1007/s00440-012-0413-8 Google Scholar: Lookup Link MathSciNet: MR3034793 · Zbl 1379.60099 · doi:10.1007/s00440-012-0413-8
[21] GRIGORESCU, I. and KANG, M. (2012). Immortal particle for a catalytic branching process. Probab. Theory Related Fields 153 333-361. Digital Object Identifier: 10.1007/s00440-011-0347-6 Google Scholar: Lookup Link MathSciNet: MR2925577 · Zbl 1251.60064 · doi:10.1007/s00440-011-0347-6
[22] HÉNARD, O. (2013). Change of measure in the lookdown particle system. Stochastic Process. Appl. 123 2054-2083. Digital Object Identifier: 10.1016/j.spa.2013.01.015 Google Scholar: Lookup Link MathSciNet: MR3038498 · Zbl 1302.60107 · doi:10.1016/j.spa.2013.01.015
[23] JAGERS, P. (1975). Branching Processes with Biological Applications. Wiley Series in Probability and Mathematical Statistics—Applied Probability and Statistics. Wiley Interscience, London-New York-Sydney. MathSciNet: MR0488341 · Zbl 0356.60039
[24] KWAŚNICKI, M. (2024). Fleming-Viot couples live forever. Probab. Theory Related Fields 188 1385-1408. Digital Object Identifier: 10.1007/s00440-023-01247-z Google Scholar: Lookup Link MathSciNet: MR4716351 · Zbl 07819907 · doi:10.1007/s00440-023-01247-z
[25] LIU, R., REN, Y.-X., SONG, R. and SUN, Z. (2021). Subcritical superprocesses conditioned on non-extinction. Preprint. Available at arXiv:2112.15184v2.
[26] MORAN, P. A. P. (1958). Random processes in genetics. Proc. Camb. Philos. Soc. 54 60-71. Digital Object Identifier: 10.1017/s0305004100033193 Google Scholar: Lookup Link MathSciNet: MR0127989 · Zbl 0091.15701 · doi:10.1017/s0305004100033193
[27] PINSKY, R. G. (1985). On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent diffusion processes. Ann. Probab. 13 363-378. MathSciNet: MR0781410 · Zbl 0567.60076
[28] REN, Y.-X., SONG, R. and SUN, Z. (2020). Spine decompositions and limit theorems for a class of critical superprocesses. Acta Appl. Math. 165 91-131. Digital Object Identifier: 10.1007/s10440-019-00243-7 Google Scholar: Lookup Link MathSciNet: MR4058118 · Zbl 1434.60250 · doi:10.1007/s10440-019-00243-7
[29] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-662-06400-9 Google Scholar: Lookup Link MathSciNet: MR1725357 · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[30] SEIDEL, P. (2014). The historical process of the spatial Moran model with selection and mutation. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg.
[31] TOUGH, O. (2023). Scaling limit of the Fleming-Viot multicolor process. Ann. Probab. 51 2345-2386. Digital Object Identifier: 10.1214/23-aop1654 Google Scholar: Lookup Link MathSciNet: MR4666298 · Zbl 07795624 · doi:10.1214/23-aop1654
[32] TOUGH, O. (2023). Scaling limit of the Fleming-Viot multicolor process. Ann. Probab. 51 2345-2386. Digital Object Identifier: 10.1214/23-aop1654 Google Scholar: Lookup Link MathSciNet: MR4666298 · Zbl 07795624 · doi:10.1214/23-aop1654
[33] VILLEMONAIS, D. (2014). General approximation method for the distribution of Markov processes conditioned not to be killed. ESAIM Probab. Stat. 18 441-467. Digital Object Identifier: 10.1051/ps/2013045 Google Scholar: Lookup Link MathSciNet: MR3333998 · Zbl 1310.82032 · doi:10.1051/ps/2013045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.