×

Immortal particle for a catalytic branching process. (English) Zbl 1251.60064

Authors’ abstract: We study the existence and asymptotic properties of a conservative branching particle system driven by a diffusion with smooth coefficients for which birth and death are triggered by contact with a set. Sufficient conditions for the process to be non-explosive are given. In the Brownian motions case the domain of evolution can be non-smooth, including Lipschitz, with integrable Martin kernel. The results are valid for an arbitrary number of particles and non-uniform redistribution after branching. Additionally, with probability one, it is shown that only one ancestry line survives. In special cases, the evolution of the surviving particle is studied, and, for a two particle system on a half line, we derive explicitly the transition function of a chain representing the position at successive branching times.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J35 Transition functions, generators and resolvents
60J75 Jump processes (MSC2010)
Full Text: DOI

References:

[1] Aikawa, H., Integrability of superharmonic functions and subharmonic functions, Proc. Am. Math. Soc., 120, 1, 109-117 (1994) · Zbl 0792.31002 · doi:10.1090/S0002-9939-1994-1169019-7
[2] Aikawa, H., Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan, 53, 1, 119-145 (2001) · Zbl 0976.31002 · doi:10.2969/jmsj/05310119
[3] Aikawa, H., Integrability of superharmonic functions in a John domain, Proc. Am. Math. Soc., 128, 1, 195-201 (2000) · Zbl 0937.31004 · doi:10.1090/S0002-9939-99-04991-6
[4] Armitage, D.; Gardiner, S., Classical Potential Theory (2000), London: Springer, London
[5] Asselah, A., Ferrari, P.A., Groisman, P.: Quasi-stationary distributions and Fleming-Viot processes in finite spaces (2009). arXiv:0904.3039v2 · Zbl 1219.60081
[6] Bieniek, M., Burdzy, K., Finch, S.: Non-extinction of a Fleming-Viot particle model (2009). arXiv:0905.1999v1 · Zbl 1253.60089
[7] Bogdan, K., Sharp Estimates for the Green Function in Lipschitz Domains, J. Math. Anal. Appl., 243, 326-337 (2000) · Zbl 0971.31005 · doi:10.1006/jmaa.1999.6673
[8] Burdzy, K., Hołyst, R., March, P.: A Fleming-Viot particle representation of the Dirichlet Laplacian. Commun. Math. Phys. 214(3) (2000) · Zbl 0982.60078
[9] Down, D.; Meyn, P.; Tweedie, R. L., Exponential and uniform ergodicity of Markov processes, Ann. Prob., 23, 4, 1671-1691 (1995) · Zbl 0852.60075 · doi:10.1214/aop/1176987798
[10] Evans, S. N., Two representations of a conditioned superprocess, Proc. R. Soc. Edinburgh Sect. A, 123, 5, 959-971 (1993) · Zbl 0784.60052 · doi:10.1017/S0308210500029619
[11] Evans, S. N.; Perkins, E., Measure-valued Markov branching processes conditioned on nonextinction, Israel J. Math., 71, 3, 329-337 (1990) · Zbl 0717.60099 · doi:10.1007/BF02773751
[12] Ferrari, P. A.; Maric, N., Quasi stationary distributions and Fleming-Viot processes in countable spaces, Electron. J. Probab., 12, 24, 684-702 (2007) · Zbl 1127.60088
[13] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Berlin: Springer, Berlin · Zbl 0562.35001
[14] Grigorescu, I., Large deviations for a catalytic Fleming-Viot branching system, Commun. Pure Appl. Math., 60, 7, 1056-1080 (2007) · Zbl 1115.60100 · doi:10.1002/cpa.20174
[15] Grigorescu, I.; Kang, M., Hydrodynamic limit for a Fleming-Viot type system, Stochastic Process. Appl., 110, 1, 111-143 (2004) · Zbl 1075.60124 · doi:10.1016/j.spa.2003.10.010
[16] Grigorescu, I., Kang, M.: The Doeblin condition for a class of diffusions with jumps (preprint) (2009)
[17] Hile, G. N.; Yeh, R. Z., ‘Phragmén-Lindelöf’ principles for solution of elliptic differential inequalities, J. Math. Anal. Appl., 107, 478-497 (1985) · Zbl 0588.35085 · doi:10.1016/0022-247X(85)90326-9
[18] Jerison, D.S., Kenig, C.E.: Boundary value problems on Lipschitz domains. In: Littmann, W. (ed.) Studies in Partial Differential Equations, vol. 23, Studies in Mathematics, pp. 1-68. Mathematical Association of America, Washington, DC (1982) · Zbl 0529.31007
[19] Lions, P.L.: Generalized Solutions of Hamilton-Jacobi Equation, Research Notes in Mathematics, Pitman Books Limited, London (1982) · Zbl 0497.35001
[20] Lobus, J.-U.: A stationary Fleming-Viot type Brownian particle system. Math. Zeitschrift, pp. 1432-1823 (2008)
[21] Maeda, F.; Suzuki, N., The integrability of superharmonic functions on lipschitz domains, Bull. London Math. Soc., 21, 270-278 (1989) · Zbl 0645.31005 · doi:10.1112/blms/21.3.270
[22] Villemonais, D.: Interacting particle pystems and Yaglom limit approximation of diffusions with unbounded drift (2010). http://arxiv.org/pdf/1005.1530
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.