×

Topological twists of massive SQCD. I. (English) Zbl 07849895

Summary: We consider topological twists of four-dimensional \(\mathcal{N} = 2\) supersymmetric QCD with gauge group SU(2) and \(N_{f} \le 3\) fundamental hypermultiplets. The twists are labelled by a choice of background fluxes for the flavour group, which provides an infinite family of topological partition functions. In this Part I, we demonstrate that in the presence of such fluxes the theories can be formulated for arbitrary gauge bundles on a compact four-manifold. Moreover, we consider arbitrary masses for the hypermultiplets, which introduce new intricacies for the evaluation of the low-energy path integral on the Coulomb branch. We develop techniques for the evaluation of these path integrals. In the forthcoming Part II, we will deal with the explicit evaluation.
For Part II see [“Topological twists of massive SQCD, Part II”, Preprint, arXiv:2312.11616].

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
57R56 Topological quantum field theories (aspects of differential topology)
57K41 Invariants of 4-manifolds (including Donaldson and Seiberg-Witten invariants)
14J80 Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
11F03 Modular and automorphic functions

References:

[1] Witten, E., Topological quantum field theory, Commun. Math. Phys., 117, 353, 1988 · Zbl 0656.53078 · doi:10.1007/BF01223371
[2] Witten, E., Supersymmetric Yang-Mills theory on a four manifold, J. Math. Phys., 35, 5101-5135, 1994 · Zbl 0822.58067 · doi:10.1063/1.530745
[3] Witten, E., Monopoles and four manifolds, Math. Res. Lett., 1, 769-796, 1994 · Zbl 0867.57029 · doi:10.4310/MRL.1994.v1.n6.a13
[4] Yamron, JP, Topological actions from twisted supersymmetric theories, Phys. Lett. B, 213, 325-330, 1988 · doi:10.1016/0370-2693(88)91769-8
[5] Anselmi, D., Fré, P.: Topological twist in four dimensions, r-duality and hyperinstantons. Nucl. Phys. B404, 288-320 (1993). doi:10.1016/0550-3213(93)90481-4 · Zbl 1043.81610
[6] Anselmi, D., Fré, P.: Topological sigma-models in four dimensions and triholomorphic maps. Nucl. Phys. B416, 255-300 (1994). doi:10.1016/0550-3213(94)90585-1 · Zbl 1007.53500
[7] Anselmi, D.; Fré, P., Gauged hyperinstantons and monopole equations, Phys. Lett. B, 347, 247-254, 1995 · doi:10.1016/0370-2693(95)00033-H
[8] Alvarez, M.; Labastida, J., Breaking of topological symmetry, Phys. Lett. B, 315, 251-257, 1993 · doi:10.1016/0370-2693(93)91609-Q
[9] Alvarez, M.; Labastida, J., Topological matter in four-dimensions, Nucl. Phys. B, 437, 356-390, 1995 · Zbl 0941.58501 · doi:10.1016/0550-3213(94)00512-D
[10] Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(N=2\) supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19-52 (1994). doi:10.1016/0550-3213(94)90124-4, doi:10.1016/0550-3213(94)00449-8. arXiv:hep-th/9407087 · Zbl 0996.81510
[11] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in \(N=2\) supersymmetric QCD, Nucl. Phys. B, 431, 484-550, 1994 · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[12] Moore, GW; Witten, E., Integration over the \(u\)-plane in Donaldson theory, Adv. Theor. Math. Phys., 1, 298-387, 1997 · Zbl 0899.57021 · doi:10.4310/ATMP.1997.v1.n2.a7
[13] Losev, A.; Nekrasov, N.; Shatashvili, SL, Issues in topological gauge theory, Nucl. Phys. B, 534, 549-611, 1998 · Zbl 0954.57013 · doi:10.1016/S0550-3213(98)00628-2
[14] Labastida, J.; Marino, M., A topological lagrangian for monopoles on four-manifolds, Phys. Lett. B, 351, 146-152, 1995 · doi:10.1016/0370-2693(95)00411-D
[15] Labastida, JMF; Marino, M., NonAbelian monopoles on four manifolds, Nucl. Phys. B, 448, 373-398, 1995 · Zbl 1009.58501 · doi:10.1016/0550-3213(95)00300-H
[16] Hyun, S.; Park, J.; Park, J-S, Spin-c topological QCD, Nucl. Phys. B, 453, 199-224, 1995 · Zbl 0925.58010 · doi:10.1016/0550-3213(95)00404-G
[17] Hyun, S., Park, J., Park, J.-S.: \(N=2\) supersymmetric QCD and four manifolds: 1. The Donaldson and Seiberg-Witten invariants, arXiv:hep-th/9508162
[18] Labastida, J.; Lozano, C., Mass perturbations in twisted \(n = 4\) supersymmetric gauge theories, Nucl. Phys. B, 518, 37-58, 1998 · Zbl 0945.81066 · doi:10.1016/S0550-3213(98)00135-7
[19] Dijkgraaf, R., Park, J.-S., Schroers, B. J.: \(N=4\) supersymmetric Yang-Mills theory on a Kahler surface. arXiv:hep-th/9801066
[20] Kanno, H.; Yang, S-K, Donaldson-Witten functions of massless \(N=2\) supersymmetric QCD, Nucl. Phys. B, 535, 512-530, 1998 · Zbl 0954.57014 · doi:10.1016/S0550-3213(98)00560-4
[21] Marino, M.; Moore, GW; Peradze, G., Superconformal invariance and the geography of four manifolds, Commun. Math. Phys., 205, 691-735, 1999 · Zbl 0988.57019 · doi:10.1007/s002200050694
[22] Marino, M.; Moore, G., Integrating over the coulomb branch in \(n = 2\) gauge theory, Nucl. Phys. B Proc. Suppl., 68, 336-347, 1998 · Zbl 0959.57028 · doi:10.1016/S0920-5632(98)00168-6
[23] Moore, G.W., Nidaiev, I.: The Partition Function Of Argyres-Douglas Theory in a Four-Manifold, arXiv:1711.09257
[24] Dedushenko, M., Gukov, S., Putrov, P.: Vertex algebras and 4-manifold invariants. In: Nigel Hitchin’s 70th Birthday Conference, 1, 249-318 (2017). arXiv:1705.01645
[25] Manschot, J., Moore, G.W.: Topological Correlators of \(SU(2), \cal{N}=2^*\) SYM on four-manifolds, arXiv:2104.06492
[26] Edelstein, JD; Gomez-Reino, M.; Marino, M., Remarks on twisted theories with matter, JHEP, 01, 004, 2001 · doi:10.1088/1126-6708/2001/01/004
[27] Göttsche, L., Nakajima, H., Yoshioka, K.: Donaldson = Seiberg-Witten from Mochizuki’s formula and instanton counting, arXiv:1001.5024
[28] Feehan, P.M.N., Leness, T.G.: \( \rm PU(2)\) monopoles. I. Regularity, Uhlenbeck compactness, and transversality. J. Differ. Geom. 49, 265-410 (1998) arXiv:dg-ga/9710032 · Zbl 0998.57057
[29] Feehan, PMN; Leness, TG, PU(2) monopoles and relations between four-manifold invariants, Topol. Appl., 88, 111-145, 1998 · Zbl 0931.58012 · doi:10.1016/S0166-8641(97)00201-0
[30] Feehan, P.M.N., Leness, T.G.: PU(2) monopoles. 2. Top level Seiberg-Witten moduli spaces and Witten’s conjecture in low degrees, arXiv:dg-ga/9712005
[31] Feehan, PMN; Leness, TG, SO(3) monopoles, level one Seiberg-Witten moduli spaces, and Witten’s conjecture in low degrees, Topol. Appl., 124, 221-326, 2002 · Zbl 1028.58012 · doi:10.1016/S0166-8641(01)00233-4
[32] : Gorodentsev, A.L., Leenson, M.I.: How to calculate the correlation function in twisted SYM \(N=2, N_f=4\) QFT on projective plane, arXiv:alg-geom/9604011
[33] Nakajima, H., Yoshioka, K.: Instanton counting on blowup. II. K-theoretic partition function. Transformation groups 10, 489-519 (2005) · Zbl 1110.14015
[34] Nakajima, H.; Yoshioka, K., Perverse coherent sheaves on blowup, iii: blow-up formula from wall-crossing, Kyoto, J. Math., 51, 263-335, 2011 · Zbl 1220.14012
[35] Marcolli, M.: Seiberg-Witten gauge theory. Hindustan Book Agency (2011) · Zbl 1230.53003
[36] Bryan, J.; Wentworth, R., The multi-monopole equations for Kähler surfaces, Turkish J. Math., 20, 119-128, 1996 · Zbl 0873.53049
[37] Pidstrigach, V., Tyurin, A.: Localisation of the donaldson’s invariants along seiberg-witten classes, arXiv preprintarXiv:dg-ga/9507004 (1995)
[38] Okonek, C., Teleman, A.: Recent developments in Seiberg-Witten theory and complex geometry, arXiv preprintarXiv:alg-geom/9612015 (1996)
[39] Labastida, J.; Marino, M., Topological Quantum Field Theory and Four Manifolds, 2005, Netherlands: Springer, Netherlands · Zbl 1087.81002
[40] Marino, M.: Topological quantum field theory and four manifolds. In: 3rd European Congress of Mathematics: Shaping the 21st Century, 8, 2000. arXiv:hep-th/0008100
[41] Nakajima, H., Yoshioka, K.: Lectures on instanton counting. In: CRM Workshop on Algebraic Structures and Moduli Spaces Montreal, Canada, July 14-20, 2003, 2003. arXiv:math/0311058 · Zbl 1080.14016
[42] Moore, G.: Lectures on the physical approach to Donaldson and Seiberg-Witten invariants of four-manifolds. https://www.physics.rutgers.edu/ gmoore/SCGP-FourManifoldsNotes-2017.pdf (2017)
[43] Taubes, CH, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett., 1, 809-822, 1994 · Zbl 0853.57019 · doi:10.4310/mrl.1994.v1.n6.a15
[44] Bershadsky, M.; Johansen, A.; Sadov, V.; Vafa, C., Topological reduction of 4D SYM to 2D \(\sigma \)-models, Nucl. Phys. B, 448, 166-186, 1995 · Zbl 1009.58502 · doi:10.1016/0550-3213(95)00242-K
[45] Göttsche, L., Nakajima, H., Yoshioka, K.: K-theoretic Donaldson invariants via instanton counting. Pure Appl. Math. Q. 5(12). doi:10.4310/PAMQ.2009.v5.n3.a5 · Zbl 1192.14011
[46] Harvey, JA; Moore, GW; Strominger, A., Reducing S-duality to T-duality, Phys. Rev. D, 52, 7161-7167, 1995 · doi:10.1103/PhysRevD.52.7161
[47] Donaldson, S.K.: Floer Homology and Algebraic Geometry, pp. 119-138. London Mathematical Society Lecture Note Series. Cambridge University Press (1995) · Zbl 0829.57011
[48] Kim, H., Manschot, J., Moore, G.W., Tao, R., Zhang, X.: Path Integral derivations of K-theoretic Donaldson invariants, arXiv: To appear
[49] Gadde, A.; Gukov, S.; Putrov, P., Fivebranes and 4-manifolds, Prog. Math., 319, 155-245, 2016 · Zbl 1373.81295 · doi:10.1007/978-3-319-43648-7_7
[50] Malmendier, A.; Ono, K., SO(3)-Donaldson invariants of \(\mathbb{P}^2\) and Mock theta functions, Geom. Topol., 16, 1767-1833, 2012 · Zbl 1255.57028 · doi:10.2140/gt.2012.16.1767
[51] Griffin, M.; Malmendier, A.; Ono, K., SU(2)-Donaldson invariants of the complex projective plane, Forum Math., 27, 2003-2023, 2015 · Zbl 1383.57035 · doi:10.1515/forum-2013-6013
[52] Malmendier, A., Ono, K.: Moonshine and Donaldson invariants of \({\mathbb{C}\mathbb{P}}^2\), arXiv:1207.5139
[53] Malmendier, A., Donaldson invariants of \(\mathbb{P}^1 \times \mathbb{P}^1\) and Mock Theta Functions, Commun. Num. Theor. Phys., 5, 203-229, 2011 · Zbl 1244.81044 · doi:10.4310/CNTP.2011.v5.n1.a5
[54] Korpas, G.; Manschot, J., Donaldson-Witten theory and indefinite theta functions, JHEP, 11, 083, 2017 · Zbl 1383.81302 · doi:10.1007/JHEP11(2017)083
[55] Korpas, G.; Manschot, J.; Moore, G.; Nidaiev, I., Renormalization and BRST symmetry in Donaldson-Witten theory, Ann. Henri Poincare, 20, 3229-3264, 2019 · Zbl 1427.81082 · doi:10.1007/s00023-019-00835-x
[56] Korpas, G.; Manschot, J.; Moore, GW; Nidaiev, I., Mocking the u-plane integral, Res. Math. Sci., 8, 43, 2021 · Zbl 1472.81184 · doi:10.1007/s40687-021-00280-5
[57] Aspman, J.; Furrer, E.; Korpas, G.; Ong, Z-C; Tan, M-C, The \(u\)-plane integral, mock modularity and enumerative geometry, Lett. Math. Phys., 112, 30, 2022 · Zbl 1490.81117 · doi:10.1007/s11005-022-01520-7
[58] Korpas, G., Mock modularity and surface defects in topological \(\cal{N} =2\) super Yang-Mills theory, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.026025
[59] Aspman, J.; Furrer, E.; Manschot, J., Cutting and gluing with running couplings in \(\cal{N} =2\) QCD, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.025021
[60] Aspman, J.; Furrer, E.; Manschot, J., Elliptic loci of SU(3) Vacua, Ann. Henri Poincare, 22, 2775-2830, 2021 · Zbl 1472.81160 · doi:10.1007/s00023-021-01040-5
[61] Aspman, J.; Furrer, E.; Manschot, J., Four flavours, triality, and bimodular forms, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.025017
[62] Shapere, AD; Tachikawa, Y., Central charges of \(N=2\) superconformal field theories in four dimensions, JHEP, 09, 109, 2008 · Zbl 1245.81250 · doi:10.1088/1126-6708/2008/09/109
[63] Ohta, Y., Prepotentials of \(N=2 SU(2)\) Yang-Mills theories coupled with massive matter multiplets, J. Math. Phys., 38, 682-696, 1997 · Zbl 0918.58078 · doi:10.1063/1.531858
[64] Argyres, PC; Douglas, MR, New phenomena in \(SU(3)\) supersymmetric gauge theory, Nucl. Phys. B, 448, 93-126, 1995 · Zbl 1009.81572 · doi:10.1016/0550-3213(95)00281-V
[65] Argyres, PC; Plesser, MR; Seiberg, N.; Witten, E., New \(\cal{N} =2\) superconformal field theories in four-dimensions, Nucl. Phys. B, 461, 71-84, 1996 · Zbl 1004.81557 · doi:10.1016/0550-3213(95)00671-0
[66] Klemm, A.: On the geometry behind \(N=2\) supersymmetric effective actions in four-dimensions. In: 33rd Karpacz Winter School of Theoretical Physics: Duality-Strings and Fields, 5 (1997). arXiv:hep-th/9705131
[67] Ohta, Y., Prepotential of \(N=2 SU(2)\) Yang-Mills gauge theory coupled with a massive matter multiplet, J. Math. Phys., 37, 6074-6085, 1996 · Zbl 0863.58080 · doi:10.1063/1.531764
[68] D’Hoker, E.; Krichever, I.; Phong, D., The effective prepotential of \(n = 2\) supersymmetric su(nc) gauge theories, Nucl. Phys. B, 489, 179-210, 1997 · Zbl 0925.81380 · doi:10.1016/s0550-3213(97)00035-7
[69] Nekrasov, NA, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831-864, 2003 · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[70] Ohta, Y.: Non-perturbative solutions to \(n=2\) supersymmetric Yang-Mills theories -progress and perspective (1999)
[71] Nekrasov, N.; Okounkov, A., Seiberg-Witten theory and random partitions, Prog. Math., 244, 525-596, 2006 · Zbl 1233.14029 · doi:10.1007/0-8176-4467-9_15
[72] Alvarez-Gaume, L., Marino, M., Zamora, F.: Softly broken \(N=2\) QCD with massive quark hypermultiplets. 1. Int. J. Mod. Phys. A 13, 403-430 (1998). doi:10.1142/S0217751X98000184. arXiv:hep-th/9703072 · Zbl 0936.81051
[73] Alvarez-Gaume, L., Marino, M., Zamora, F.: Softly broken \(N=2\) QCD with massive quark hypermultiplets. 2. Int. J. Mod. Phys. A 13, 1847-1880 (1998) doi:10.1142/S0217751X98000810. arXiv:hep-th/9707017 · Zbl 0936.81053
[74] Marino, M.; Zamora, F., Duality symmetry in softly broken \(N=2\) gauge theories, Nucl. Phys. B, 533, 373-405, 1998 · Zbl 1078.81565 · doi:10.1016/S0550-3213(98)00490-8
[75] Sonnenschein, J.; Theisen, S.; Yankielowicz, S., On the relation between the holomorphic prepotential and the quantum moduli in susy gauge theories, Phys. Lett. B, 367, 145-150, 1996 · doi:10.1016/0370-2693(95)01399-7
[76] Eguchi, T.; Yang, S-K, Prepotentials of \(N=2\) supersymmetric gauge theories and soliton equations, Mod. Phys. Lett. A, 11, 131-138, 1996 · Zbl 1022.81764 · doi:10.1142/S0217732396000151
[77] D’Hoker, E.; Krichever, I.; Phong, D., The renormalization group equation in \(N=2\) supersymmetric gauge theories, Nucl. Phys. B, 494, 89-104, 1997 · Zbl 0979.81587 · doi:10.1016/S0550-3213(97)00156-9
[78] Malmendier, A., The signature of the Seiberg-Witten surface, Surv. Differ. Geom., 15, 255-278, 2010 · doi:10.4310/SDG.2010.v15.n1.a8
[79] Caorsi, M.; Cecotti, S., Special arithmetic of flavor, JHEP, 08, 057, 2018 · Zbl 1396.81169 · doi:10.1007/JHEP08(2018)057
[80] Closset, C., Magureanu, H.: The \(U\)-plane of rank-one 4d \(\cal{N}=2\) KK theories. SciPost Phys.12, 065 (2022). doi:10.21468/SciPostPhys.12.2.065. arXiv:2107.03509
[81] Shioda, T., On elliptic modular surfaces, J. Math. Soc. Jpn., 24, 20-59, 1972 · Zbl 0226.14013 · doi:10.2969/jmsj/02410020
[82] Schuett, M., Shioda, T.: Elliptic Surfaces (2009)
[83] Maier, R.S.: On Rationally Parametrized Modular Equations, arXiv Mathematics e-prints (2006) arXiv:math/0611041
[84] Miranda, R.: An overview of algebraic surfaces, Lecture Notes in Pure and Appl. Math. 157-217 (1997) · Zbl 0903.14011
[85] Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation, arXiv:0907.3987
[86] Eguchi, T.: Seiberg-Witten Theory and S-Duality, pp. 103-120. Springer, Netherlands, Dordrecht (1999) · Zbl 0939.81037
[87] Eguchi, T., Hori, K., Ito, K., Yang, S.-K.: Study of \(N = 2\) superconformal field theories in 4 dimensions. Nucl. Phys. B471, 430-442 (1996) doi:10.1016/0550-3213(96)00188-5 · Zbl 1003.81566
[88] Persson, U., Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z., 205, 1-47, 1990 · Zbl 0722.14021 · doi:10.1007/BF02571223
[89] Miranda, R., Persson’s list of singular fibers for a rational elliptic surface, Math. Z., 205, 191-211, 1990 · Zbl 0722.14022 · doi:10.1007/BF02571235
[90] Nahm, W.: On the Seiberg-Witten approach to electric-magnetic duality, arXiv:hep-th/9608121
[91] Brandhuber, A.; Stieberger, S., Periods, coupling constants and modular functions in \(N=2\) SU(2) SYM with massive matter, Int. J. Mod. Phys. A, 13, 1329-1344, 1998 · Zbl 0936.81043 · doi:10.1142/S0217751X98000627
[92] Huang, M-X; Klemm, A., Holomorphicity and modularity in Seiberg-Witten theories with matter, JHEP, 07, 083, 2010 · Zbl 1290.81071 · doi:10.1007/JHEP07(2010)083
[93] Matone, M., Instantons and recursion relations in \(N=2\) SUSY gauge theory, Phys. Lett. B, 357, 342-348, 1995 · doi:10.1016/0370-2693(95)00920-G
[94] Stiller, PF, Differential equations associated with elliptic surfaces, J. Math. Soc. Jpn., 33, 203-233, 1981 · Zbl 0476.14014 · doi:10.2969/jmsj/03320203
[95] Matone, M., Koebe 1/4 theorem and inequalities in \(n=2\) supersymmetric qcd, Phys. Rev. D, 53, 7354-7358, 1996 · doi:10.1103/PhysRevD.53.7354
[96] Klemm, A., Manschot, J., Wotschke, T.: Quantum geometry of elliptic Calabi-Yau manifolds, arXiv:1205.1795
[97] Magureanu, H., Seiberg-Witten geometry, modular rational elliptic surfaces and BPS quivers, JHEP, 05, 163, 2022 · Zbl 1522.81647 · doi:10.1007/JHEP05(2022)163
[98] Donaldson, S.K.,. Kronheimer, P.B.: The Geometry of Four-Manifolds. Clarendon Press; Oxford University Press Oxford: New York (1990) · Zbl 0820.57002
[99] Aspman, J., Furrer, E., Manschot, J.: Topological twists of massive SQCD, Part II, arXiv:2312.11616
[100] Moore, GW; Nekrasov, N.; Shatashvili, S., Integrating over Higgs branches, Commun. Math. Phys., 209, 97-121, 2000 · Zbl 0981.53082 · doi:10.1007/PL00005525
[101] Mathai, V.; Quillen, DG, Superconnections, Thom classes and equivariant differential forms, Topology, 25, 85-110, 1986 · Zbl 0592.55015 · doi:10.1016/0040-9383(86)90007-8
[102] Atiyah, M.; Jeffrey, L., Topological Lagrangians and cohomology, J. Geom. Phys., 7, 119-136, 1990 · Zbl 0721.58056 · doi:10.1016/0393-0440(90)90023-V
[103] Losev, A., Nekrasov, N., Shatashvili, S.: Testing Seiberg-Witten solution (1998)
[104] Cordes, S.; Moore, GW; Ramgoolam, S., Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. B Proc. Suppl., 41, 184-244, 1995 · Zbl 0991.81585 · doi:10.1016/0920-5632(95)00434-B
[105] Vafa, C.; Witten, E., A strong coupling test of S duality, Nucl. Phys. B, 431, 3-77, 1994 · Zbl 0964.81522 · doi:10.1016/0550-3213(94)90097-3
[106] Witten, E., On S duality in Abelian gauge theory, Selecta Math., 1, 383, 1995 · Zbl 0833.53024 · doi:10.1007/BF01671570
[107] Nelson, AE; Seiberg, N., R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B, 416, 46-62, 1994 · Zbl 1007.81504 · doi:10.1016/0550-3213(94)90577-0
[108] Marino, M.; Moore, GW, The Donaldson-Witten function for gauge groups of rank larger than one, Commun. Math. Phys., 199, 25-69, 1998 · Zbl 0921.58080 · doi:10.1007/s002200050494
[109] Córdova, C., Dumitrescu, T.T.: Candidate phases for SU(2) Adjoint \(QCD_4\) with two flavors from \({\cal{N}} =2\) supersymmetric Yang-Mills theory, arXiv:1806.09592
[110] Manschot, J.; Moore, GW; Zhang, X., Effective gravitational couplings of four-dimensional \(\cal{N} = 2\) supersymmetric gauge theories, JHEP, 06, 150, 2020 · Zbl 1437.83048 · doi:10.1007/JHEP06(2020)150
[111] Mariño, M., The uses of Whitham hierarchies, Prog. Theor. Phys. Suppl., 135, 29-52, 1999 · doi:10.1143/ptps.135.29
[112] Labastida, JMF; Lozano, C., Duality in twisted \(N=4\) supersymmetric gauge theories in four-dimensions, Nucl. Phys. B, 537, 203-242, 1999 · Zbl 0941.57029 · doi:10.1016/S0550-3213(98)00653-1
[113] Takasaki, K., Integrable hierarchies and contact terms in u-plane integrals of topologically twisted supersymmetric gauge theories, Int. J. Mod. Phys. A, 14, 1001-1013, 1999 · Zbl 0939.37038 · doi:10.1142/s0217751x9900049x
[114] Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491 (1998). arXiv:alg-geom/9609022 · Zbl 0919.11036
[115] Bringmann, K.; Diamantis, N.; Ehlen, S., Regularized inner products and errors of modularity, Int. Math. Res. Not., 2017, 7420-7458, 2017 · Zbl 1405.11052
[116] Bruinier, JH; Funke, J., On two geometric theta lifts, Duke Math. J., 125, 45-90, 2004 · Zbl 1088.11030 · doi:10.1215/S0012-7094-04-12513-8
[117] Lerche, W.; Schellekens, AN; Warner, NP, Lattices and strings, Phys. Rep., 177, 1, 1989 · Zbl 0942.53510 · doi:10.1016/0370-1573(89)90077-X
[118] Dixon, LJ; Kaplunovsky, V.; Louis, J., Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B, 355, 649-688, 1991 · doi:10.1016/0550-3213(91)90490-O
[119] Harvey, JA; Moore, GW, Algebras, BPS states, and strings, Nucl. Phys. B, 463, 315-368, 1996 · Zbl 0912.53056 · doi:10.1016/0550-3213(95)00605-2
[120] Bruinier, G.H.J.H., van der Geer, G., Zagier, D.: The 1-2-3 of Modular Forms. Springer, Heidelberg (2008). doi:10.1007/978-3-540-74119-0 · Zbl 1197.11047
[121] Petersson, H.: Konstruktion der Modulformen und der zu gewissen Grenzkreisgruppen gehörigen automorphen Formen von positiver reeller Dimension und die vollständige Bestimmung ihrer Fourierkoeffizienten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 417-494 (1950) · Zbl 0041.41602
[122] Bringmann, K.; Diamantis, N.; Ehlen, S., Regularized inner products and errors of modularity, Int. Math. Res. Not., 2017, 7420-7458, 2017 · Zbl 1405.11052 · doi:10.1093/imrn/rnw225
[123] Diamond, F.; Shurman, J., A First Course in Modular Forms, 2005, New York: Springer, New York · Zbl 1062.11022
[124] Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, vol. 102. American Mathematical Society, cbms regional conference series in mathematics ed (2004) · Zbl 1119.11026
[125] Zagier, D.: Introduction to Modular Forms; From Number Theory to Physics. Springer, Berlin 1992, 238-291 (1992) · Zbl 0791.11022
[126] Schultz, D.: Notes on modular forms. https://faculty.math.illinois.edu/ schult25/ModFormNotes.pdf
[127] Koblitz, N., Introduction to Elliptic Curves and Modular Forms, 1993, New York: Springer, New York · Zbl 0804.11039 · doi:10.1007/978-1-4612-0909-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.