×

Global phase portraits of the quadratic systems having a singular and irreducible invariant curve of degree 3. (English) Zbl 07847272


MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34A26 Geometric methods in ordinary differential equations
Full Text: DOI

References:

[1] Artés, J. C. & Llibre, J. [1994a] “ Hamiltonian quadratic systems,” J. Diff. Eqs.107, 80-95. · Zbl 0791.34048
[2] Artés, J. C. & Llibre, J. [1994b] “ Phase portraits for quadratic systems having a focus and one antisaddle,” Rocky Mount. J. Math.24, 875-889. · Zbl 0814.34020
[3] Artés, J. C., Kooij, R. E. & Llibre, J. [1998] “ Structurally stable quadratic vector fields,” Mem. Amer. Math. Soc.134, 108. · Zbl 0991.34049
[4] Artés, J. C., Llibre, J. & Schlomiuk, D. [2006] “ The geometry of quadratic differential systems with a weak focus of second order,” Int. J. Bifurcation and Chaos16, 3127-3194. · Zbl 1124.34014
[5] Artés, J. C., Llibre, J. & Vulpe, N. [2007] “ Quadratic systems with a rational first integral of degree two: A complete classification in the coefficient space \(\mathbb{R}^{1 2} \),” Rend. Circ. Mat. di Palermo56, 417-444. · Zbl 1196.34014
[6] Artés, J. C., Llibre, J. & Vulpe, N. [2009] “ Quadratic systems with a polynomial first integral: A complete classification in the coefficient space \(\mathbb{R}^{1 2} \),” J. Diff. Eqs.246, 3535-3558. · Zbl 1170.34003
[7] Artés, J. C., Llibre, J. & Vulpe, N. [2010] “ Quadratic systems with a rational first integral of degree three: A complete classification in the coefficient space \(\mathbb{R}^{1 2} \),” Rend. Circ. Mat. di Palermo59, 419-449. · Zbl 1213.34004
[8] Artés, J. C., Rezende, A. C. & Oliveira, R. D. S. [2013] “ Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node,” Int. J. Bifurcation and Chaos23, 1350140-1-21. · Zbl 1275.34045
[9] Artés, J. C., Llibre, J., Schlomiuk, D. & Vulpe, N. [2021] Geometric Configurations of Singularities of Planar Polynomial Differential Systems (Birkhäuser). · Zbl 1493.37001
[10] Berlinskiĭ, A. N. [1960] “ On the behavior of the integral curves of a differential equation,” (in Russian). Izv. Vysš. Učebn. Zaved. Matematika15, 3-18. · Zbl 0105.28902
[11] Berlinskiĭ, A. N. [1966] “ Qualitative study of the differential equation \(ẋ=x+ b_0 x^2+ b_1xy+ b_2 y^2,ẏ=y+ a_0 x^2+ a_1xy+ a_2 y^2\),” J. Diff. Eqs.2, 174-178. · Zbl 0176.05201
[12] Bix, R. [2006] Conics and Cubics. A Concrete Introduction to Algebraic Curves, 2nd edition, (Springer). · Zbl 1106.14014
[13] Cairó, L. & Llibre, J. [1997] “ Phase portraits of planar semi-homogeneous vector fields,” Nonlin. Anal. Th. Meth. Appl.29, 783-811. · Zbl 0886.34026
[14] Chen, F., Li, C., Llibre, J. & Zhang, Z. [2006] “ A uniform proof on the weak Hilbert’s 16th problem for \(n=2\),” J. Diff. Eqs.221, 309-342. · Zbl 1098.34024
[15] Chow, S.-N., Li, C. & Yi, Y. [2002] “ The cyclicity of period annulus of degenerate quadratic Hamiltonian system with elliptic segment loop,” Erg. Th. Dyn. Syst.22, 1233-1261. · Zbl 1082.37059
[16] Coll, B., Gasull, A. & Llibre, J. [1987] “ Some theorems on the existence, uniqueness and nonexistence of limit cycles for quadratic systems,” J. Diff. Eqs.67, 372-399. · Zbl 0616.34028
[17] Coll, B., Li, C. & Prohence, R. [2009] “ Quadratic perturbations of a class of quadratic reversible systems with two centers,” Disc. Contin. Dyn. Syst.24, 699-729. · Zbl 1181.34041
[18] Coppel, W. A. [1966] “ A survey of quadratic systems,” J. Diff. Eqs.2, 293-304. · Zbl 0143.11903
[19] Dickson, R. J. & Perko, L. M. [1970] “ Bounded quadratic systems in the plane,” J. Diff Eqs.6, 251-273. · Zbl 0191.10403
[20] Dumortier, F. & Li, C. [1997] “ Quadratic Lienard equations with quadratic damping,” J. Diff. Eqs.139, 41-59. · Zbl 0881.34046
[21] Dumortier, F., Llibre, J. & Artés, J. C. [2006] Qualitative Theory of Planar Polynomial Systems (Springer). · Zbl 1110.34002
[22] Gasull, A., Li-Ren, S. & Llibre, J. [1986] “ Chordal quadratic systems,” Rocky Mount. J. Math.16, 751-782. · Zbl 0609.34040
[23] Gasull, A. & Llibre, J. [1988] “ On the nonsingular quadratic differential equations in the plane,” Proc. Amer. Math. Soc.104, 793-794. · Zbl 0692.34047
[24] Gavrilov, L. & Iliev, I. D. [2000] “ Second order analysis in polynomially perturbed reversible quadratic Hamiltonian systems,” Erg. Th. Dyn. Syst.20, 1671-1686. · Zbl 0992.37054
[25] Gavrilov, L. [2001] “ The infinitesimal 16th Hilbert problem in the quadratic case,” Invent. Math.143, 449-497. · Zbl 0979.34024
[26] Han, M. & Yang, C. [2005] “ On the cyclicity of a 2-polycycle for quadratic systems,” Chaos Solit. Fract.23, 1787-1794. · Zbl 1081.34512
[27] Hua, D. D., Cairo, L., Feix, M. R., Govinder, K. S. & Leach, P. G. L. [1996] “ Connection between the existence of first integrals and the Painlevé property in two-dimensional Lotka-Volterra and quadratic systems,” Proc. Roy. Soc. London452, 859-880. · Zbl 0873.34005
[28] Li, C. & Zhang, Z. [2002] “ Remarks on 16th weak Hilbert problem for \(n=2\),” Nonlinearity15, 1975-1992. · Zbl 1219.34042
[29] Li, W., Llibre, J., Nicolau, M. & Zhang, X. [2002] “ On the differentiability of first integrals of two dimensional flows,” Proc. Amer. Math. Soc.130, 2079-2088. · Zbl 1010.34023
[30] Li, C. & Llibre, J. [2004] “ A unified study on the cyclicity of period annulus of the reversible quadratic Hamiltonian systems,” J. Dyn. Diff. Eqs.16, 271-295. · Zbl 1077.34036
[31] Llibre, J., Pérez del Río, J. S. & Rodríguez, J. A. [2000] “ Phase portraits of a new class of integrable quadratic vector fields,” Dyn. Cont. Disc. Impulsive Syst.7, 595-616. · Zbl 0980.34022
[32] Llibre, J. & Schlomiuk, D. [2004] “ The geometry of quadratic differential systems with a weak focus of third order,” Canad. J. Math.56, 310-343. · Zbl 1058.34034
[33] Llibre, J. & Medrado, J. C. [2005] “ Darboux integrability and reversible quadratic vector fields,” Rocky Mountain J. Math.35, 1999-2057. · Zbl 1107.34032
[34] Llibre, J., Oliveira, R. & Rodrigues, C. [2021] “ Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant,” Electron. J. Diff. Eqs., Paper No. 69-1-52. · Zbl 1468.34038
[35] Lunkevich, V. A. & Sibirskii, K. S. [1982] “ Integrals of a general quadratic differential system in cases of a center,” Diff. Eqs.18, 563-568. · Zbl 0499.34017
[36] Markus, L. [1954] “ Global structure of ordinary differential equations in the plane,” Trans. Amer. Math. Soc.76, 127-148. · Zbl 0055.08102
[37] Neumann, D. A. [1975] “ Classification of continuous flows on 2-manifolds,” Proc. Amer. Math. Soc.48, 73-81. · Zbl 0307.34044
[38] Oliveira, R., Rezende, A. C., Schlomiuk, D. & Vulpe, N. [2017] “ Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas,” Electron. J. Diff. Eqs., Paper No. 295-1-122. · Zbl 1386.34073
[39] Oliveira, R., Schlomiuk, D., Travaglini, A. M. & Valls, C. [2021a] “ Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability,” Electron. J. Qual. Th. Diff. Eqs., Paper No. 45-1-90. · Zbl 1488.58027
[40] Oliveira, R., Schlomiuk, D. & Travaglini, A. M. [2021b] “ Geometry and integrability of quadratic systems with invariant hyperbolas,” Electron. J. Qual. Th. Diff. Eqs., Paper No. 6-1-56. · Zbl 1474.34226
[41] Peixoto, M. M. [1973] Dynamical Systems. Proc. Symp. University of Bahia (Acad. Press, NY), pp. 389-420.
[42] Poincaré, H. [1891] “ Sur l’intégration des équations différentielles du premier ordre et du premier degré I,” Rend. Circ. Mat. di Palermo5, 161-191. · JFM 23.0319.01
[43] Poincaré, H. [1928] Sur les Courbes Définies par une Équation Différentielle, Oevres compltes, Vol. 1. · JFM 12.0588.01
[44] Reyn, J. W. [1994] A Bibliography of the Qualitative Theory of Quadratic Systems of Differential Equations in the Plane, Third edition. Delft University of Technology, Report 94-02.
[45] Roset, I. G. [1991] Nonlocal Bifurcation of Limit Cycles and Quadratic Differential Equations in the Plane (Russian), Dissertation Kand. Phys. Mat. Samarkand University.
[46] Roussarie, R. & Schlomiuk, D. [2002] “ On the geometric structure of the class of planar quadratic differential systems,” Qual. Th. Dyn. Syst.3, 93-121. · Zbl 1043.34035
[47] Schlomiuk, D. & Vulpe, N. [2004] “ Planar quadratic vector fields with invariant lines of total multiplicity at least five,” Qual. Th. Dyn. Syst.5, 135-194. · Zbl 1101.34016
[48] Schlomiuk, D. & Vulpe, N. [2005] “ Geometry of quadratic differential systems in the neighborhood of infinity,” J. Diff. Eqs.215, 357-400. · Zbl 1090.34024
[49] Schlomiuk, D. & Vulpe, N. [2008a] “ Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity,” Rocky Mountain J. Math.38, 1887-2104. · Zbl 1175.34037
[50] Schlomiuk, D. & Vulpe, N. [2008b] “ Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity,” Rocky Mountain J. Math.38, 2015-2075. · Zbl 1175.34037
[51] Schlomiuk, D. & Vulpe, N. [2008c] “ Planar quadratic differential systems with invariant straight lines of total multiplicity four,” Nonlin. Anal.68, 681-715. · Zbl 1136.34037
[52] Schlomiuk, D. & Vulpe, N. [2008d] “ Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four,” Bul. Acad. Stiinte Repub. Mold. Mat., pp. 27-83. · Zbl 1159.34329
[53] Schlomiuk, D. & Vulpe, N. [2008e] “ The full study of planar quadratic differential systems possessing a line of singularities at infinity,” J. Dyn. Diff. Eqs.20, 737-775. · Zbl 1168.34024
[54] Schlomiuk, D. & Vulpe, N. [2010] “ Global classification of the planar Lotka-Volterra differential systems according to their configurations of invariant straight lines,” J. Fixed Point Th. Appl.8, 177-245. · Zbl 1205.34073
[55] Schlomiuk, D. & Vulpe, N. [2012] “ Global topological classification of Lotka-Volterra quadratic differential systems,” Electron. J. Diff. Eqs.64, 69. · Zbl 1256.34036
[56] Schlomiuk, D. & Zhang, X. [2018] “ Quadratic differential systems with complex conjugate invariant lines meeting at a finite point,” J. Diff. Eqs.265, 3650-3684. · Zbl 1393.37023
[57] Vulpe, N. I. [1983] “ Affine-invariant conditions for the topological discrimination of quadratic systems with a center,” J. Diff. Eqs.19, 273-280. · Zbl 0556.34019
[58] Ye, Y. Q., Cai, S. L., Chen, L. S., Huang, K. C., Luo, D. J., Ma, Z. E., Wang, E. N., Wang, M. S. & Yang, X. A. [1986] A Theory of Limit Cycles, Translated from the Chinese by Chi Y. Lo. Second edition. Translations of Mathematical Monographs. 66 (Amer. Math. Soc., Providence, RI). · Zbl 0588.34022
[59] Zhang, P. [2002] “ On the distribution and number of limit cycles for quadratic systems with two foci,” Qual. Th. Dyn. Syst.3, 437-463. · Zbl 1050.34036
[60] Żoła̧dek, H. [1995] “ The cyclicity of triangles and lines in quadratic systems,” J. Diff. Eqs.122, 137-159. · Zbl 0840.34031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.