×

Quadratic systems with a rational first integral of degree three: a complete classification in the coefficient space \(\mathbb R^{12}\). (English) Zbl 1213.34004

Authors’ abstract: A quadratic polynomial differential system can be identified with a single point of \(\mathbb R^{12}\) through its coefficients. The phase portrait of the quadratic systems having a rational first integral of degree 3 have been studied using normal forms. Here using algebraic invariant theory, we characterize all the non-degenerate quadratic polynomial differential systems in \(\mathbb R^{12}\) having a rational first integral of degree 3. We show that there are only 31 different topological phase portraits in the Poincaré disc associated to this family of quadratic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and a rescaling of the time variable. Moreover, each one of these 31 representatives is determined by a set of algebraic invariant conditions and we provide a first integral for it.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
Full Text: DOI

References:

[1] Artés, J.C., Llibre, J., Vulpe, N.I.: Quadratic systemswith a rational first integral of degree 2: a complete classification in the coefficient space \(\mathbb{R}\)12, Rend. Circ. Mat. Palermo, 56 (2007), 417–444 · Zbl 1196.34014 · doi:10.1007/BF03032094
[2] Artés, J.C., Llibre, J., Vulpe, N.I.: Singular points of quadratic systems:A complete classification in the coefficient space \(\mathbb{R}\)12, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 313–362 · Zbl 1206.34051 · doi:10.1142/S021812740802032X
[3] Artés, J.C., Llibre, J., Vulpe, N.I.: Quadratic systems with a polynomial first integral: a complete classification in the coefficient space \(\mathbb{R}\)12, J. Differential Equations, 246 (2009), 3535–3558 · Zbl 1170.34003 · doi:10.1016/j.jde.2008.12.010
[4] Baltag, V.: Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems, Bull. Acad. Sci. Mold. Mat., 2003, no. 2, 31–46 · Zbl 1051.34022
[5] Baltag, V. A., Vulpe, N. I.: Total multiplicity of all finite critical points of the polynomial differential system, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations & Dynam. Systems, 5 (1997), 455–471 · Zbl 0942.34027
[6] Cairó, L., Llibre, J.: Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2, Nonlinear Anal., 67 (2007), 327–348 · Zbl 1189.34065 · doi:10.1016/j.na.2006.04.021
[7] Calin, Iu.: On rational bases of GL(2, \(\mathbb{R}\))-comitants of planar polynomial systems of differential equations, Bull. Acad. Sci. Mold. Mat., 2003, no. 2, 69–86 · Zbl 1050.34049
[8] Chavarriga, J., García, B., Llibre J., Pérez del Río, J. S., Rodríguez, J. A.: Polynomial first integrals of quadratic vector fields, J. Differential Equations, 230 (2006), 393–421 · Zbl 1117.34035 · doi:10.1016/j.jde.2006.07.022
[9] García, B., Llibre, J., Pérez del Río, J. S.: Phase portraits of the quadratic vector fields with a polynomial first integral, Rend. Circ. Mat. Palermo, 55 (2006), 420–440 · Zbl 1150.34008 · doi:10.1007/BF02874780
[10] Llibre, J., Oliveira, R. D. S.: Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 3, Nonlinear Anal., 70 (2009), 3549–3560 · Zbl 1171.34035 · doi:10.1016/j.na.2008.07.012
[11] Llibre, J., Oliveira, R. D. S.: Correction to ”Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 3”, Nonlinear Anal., 71 (2009), no. 12, 6378–6379 · Zbl 1235.34151 · doi:10.1016/j.na.2009.06.002
[12] Llibre, J., Pessoa, C.: Phase portraits for quadratic homogeneouspolynomial vector fields on \( \mathbb{S} \) 2, Rend. Circ. Mat. Palermo, 58 (2009), 361–406 · Zbl 1196.34040 · doi:10.1007/s12215-009-0030-2
[13] Olver, P. J.: Classical Invariant Theory. (London Mathematical Society student texts 44) Cambridge University Press (1999) · Zbl 0971.13004
[14] Poincaré, H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré I and II, Rend. Circ. Mat. Palermo, 5 (1891), 161–191; 11 (1897), 193–239 · Zbl 0581.41028 · doi:10.1007/BF03015693
[15] Popa, M. N.: Applications of algebraic methods to differential systems (Romanian). Piteshty University, The Flower Power Edit. (2004)
[16] Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of at least five total multiplicity, Qual. Theory Dyn. Syst., 5 (2004), 135–194 · Zbl 1101.34016 · doi:10.1007/BF02968134
[17] Schlomiuk, D., Vulpe, N.: Geometry of quadratic differential systems in the neighborhood of infinity, J. Differential Equations, 215 (2005), 357–400 · Zbl 1090.34024 · doi:10.1016/j.jde.2004.11.001
[18] Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity, RockyMountain J. Math., 38 (2008), 2015–2076 · Zbl 1175.34037
[19] Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of total multiplicity four, Nonlinear Anal., 68 (2008), 681–715 · Zbl 1136.34037 · doi:10.1016/j.na.2006.11.028
[20] Schlomiuk, D., Vulpe, N.: The full study of planar quadratic differential systems possessing a line of singularities at infinity, J. Dynam. Differential Equations, 20 (2008), 737–775 · Zbl 1168.34024 · doi:10.1007/s10884-008-9117-2
[21] Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic systems with invariant lines of total multiplicity four, Bul. Acad. Ştiinţe Repub. Mold. Mat., 56 (2008), 27–83 · Zbl 1159.34329
[22] Sibirskii, K. S.: Introduction to the algebraic theory of invariants of differential equations (translated from the Russian). (Nonlinear Science: Theory and Applications) Manchester: ManchesterUniversity Press (1988)
[23] Vulpe, N. I.: Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differential Equations, 19 (1983), 273–280 · Zbl 0556.34019
[24] Vulpe, N. I.: Polynomial basesçof comitants of differential systems and their applications in qualitative theory (Russian), ”Shtiintsa”, Kishinev (1986)
[25] Reyn, J. W.: A bibliography of the qualitative theory of quadratic systems of differential equations in the plane, Delf University of Technology, http://ta.twi.tudelf.nl/DV/Staff/J.W.Reyn.html (1997) · Zbl 0902.34026
[26] Yanqian, Ye et al.: Theory of Limit Cycles. (Transl. Math. Monographs 66) Providence: Amer. Math. Soc. (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.