×

Generalized Pizzetti’s formula for Weinstein operator and its applications. (English) Zbl 07846625

Summary: This study examines various facets of harmonic analysis, with a specific emphasis on the Weinstein operator \(\Delta_{\nu}\) defined in \(\mathbb{R}^{n-1}\times (0, \infty)\). The Weinstein operator is given by \[ \Delta_{\nu} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} + \frac{2\nu +1}{x_n}\frac{\partial}{\partial x_n}. \] The study begins with an exploration of the well-known Pizzetti’s formula extended to accommodate the Weinstein operator, emphasizing the associated spherical mean and resulting in the derivation of asymptotic expansions. Subsequently, the investigation shifts its focus to the fractional power of the Weinstein operator, particularly exploring the regularized fractional Weinstein operator. Utilizing the Pezzetti formula related to the Weinstein operator, we construct a singular integral representation and establish a regularization scheme.

MSC:

43A32 Other transforms and operators of Fourier type
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Abdelkefi, C., Maximal functions for Weinstein operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19, 1, 105-119, 2020 · Zbl 1524.42018 · doi:10.2478/aupcsm-2020-0009
[2] Ben Mohamed, H., Saoudi, A.: Calderón type reproducing formula for the Weinstein-Stockwell transform. Series, Rendiconti del Circolo Matematico di Palermo, II (2023)
[3] Ben Nahia, Z., Ben Salem, N.: On a mean value property associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory held in Kouty, Czech Republic (ICPT’ 94), pp. 243-253 (1996) · Zbl 0858.35006
[4] Ben Nahia, Z.: Spherical harmonics and applications associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory held in Kouty, Czech Republic (ICPT ’94), pp. 223-241 (1994) · Zbl 0858.33008
[5] Ben Salem, N., Hardy-Littlewood-Sobolev type inequalities associated with the Weinstein operator, Integral Transform. Spec. Funct., 31, 1, 18-35, 2020 · Zbl 1427.42029 · doi:10.1080/10652469.2019.1652824
[6] Ben Salem, N., Inequalities related to spherical harmonics associated with the Weinstein operator, Integral Transform. Spec. Funct., 34, 1, 41-64, 2023 · Zbl 1527.33010 · doi:10.1080/10652469.2022.2087063
[7] Ben Salem, N.; Nasr, AR, Heisenberg-type inequalities for the Weinstein operator, Integral Transform. Spec. Funct., 26, 700-718, 2015 · Zbl 1322.42012 · doi:10.1080/10652469.2015.1038531
[8] Bouzeffour, F.; Garayev, G., On the fractional Bessel operator, Integral Transform. Spec. Funct., 33, 3, 230-246, 2022 · Zbl 07493955 · doi:10.1080/10652469.2021.1925268
[9] Bouzeffour, F.; Jedidi, W., On the fractional Dunkl-Laplacian, Fract. Cal. Appl. Anal., 27, 433-457, 2021 · Zbl 1539.42009 · doi:10.1007/s13540-023-00225-5
[10] Bouzeffour, F.; Jedidi, W., Jacobi-type functions defined by fractional Bessel derivatives, Integral Transform. Spec. Funct., 34, 3, 228-243, 2023 · Zbl 1534.33009 · doi:10.1080/10652469.2022.2108419
[11] Bouzeffour, F.; Jedidi, W., Fractional Riesz-Feller type derivative for the one dimensional Dunkl operator and Lipschitz condition, Integral Transform. Spec. Funct., 35, 1, 49-60, 2024 · Zbl 1541.26018 · doi:10.1080/10652469.2023.2272026
[12] Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz. In: Hirsch, F., Mokobodzki, G. (eds) Séminaire de Théorie du Potentiel, No. 3 (Paris, 1976/1977). Lecture Notes in Mathematics, Vol. 681, pp. 18-38. Springer (1978) · Zbl 0386.31007
[13] Chettaoui, C., Ben Mohamed, H.: Bochner-Hecke theorems in the generalized Weinstein theory setting and applications. In: Complex Analysis and Operator Theory (2023)
[14] Chettaoui, C.; Trimèche, K., Bochner-Hecke theorems for the Weinstein transform and application, Fract. Calc. Appl. Anal., 13, 3, 261-280, 2010 · Zbl 1226.42006
[15] Kwasnicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Cal. Appl. Anal., 20, 7-51, 2017 · Zbl 1375.47038 · doi:10.1515/fca-2017-0002
[16] Mehrez, K., Paley-Wiener theorem for the Weinstein transform and applications, Integral Transform. Spec. Funct., 28, 8, 616-628, 2017 · Zbl 1372.42006 · doi:10.1080/10652469.2017.1334652
[17] Mejjaoli, H., Heat equations associated with Weinstein operator and applications, J. Funct. Spaces Appl., 2013, 1-13, 2013 · Zbl 1298.46036
[18] Mejjaoli, H.; Salem, AOA, Weinstein Gabor transform and applications, Adv. Pure Math., 2, 203-210, 2012 · Zbl 1252.42012 · doi:10.4236/apm.2012.23029
[19] Mejjaoli, H.; Salhi, M., Uncertainty principles for the Weinstein transform, Czechoslov. Math. J., 61, 941-974, 2011 · Zbl 1249.35034 · doi:10.1007/s10587-011-0061-7
[20] Mejjaoli, H.; Trimèche, K., On a mean value property associated with the Dunkl Laplacian operator and applications, Integral Transform. Spec. Funct., 12, 3, 279-302, 2001 · Zbl 1027.47026 · doi:10.1080/10652460108819351
[21] Nefzi, W., Riesz transforms for the Weinstein operator, Integral Transform. Spec. Funct., 28, 10, 751-771, 2017 · Zbl 1381.42021 · doi:10.1080/10652469.2017.1358713
[22] Nefzi, W., Fractional integrals for the Weinstein operator, Integral Transform. Spec. Funct., 31, 11, 906-920, 2020 · Zbl 1462.42018 · doi:10.1080/10652469.2020.1761803
[23] Othmani, Y.; Trimèche, K., Real Paley-Wiener theorems associated with the Weinstein operator, Mediterr. J. Math., 3, 105-118, 2006 · Zbl 1182.42012 · doi:10.1007/BF03339787
[24] Pizzetti, P., On the average values taken by a function of points in space on the surface of a sphere, Rend. Circ. Mat. Palermo, 27, 182-185, 1909
[25] Plessis, N., An Introduction to Potential Theory, 1970, Edinburgh: Oliver & Boyd, Edinburgh · Zbl 0208.13604
[26] Riesz, M., Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9, 1-42, 1938 · JFM 64.0476.03
[27] Samko, SG, Hypersingular Integrals and Their Applications, Series Analytical Methods and Special Functions 5, 2005, London, New York: Taylor & Francis, London, New York
[28] Saoudi, A., A variation of \(L^p\) uncertainty principles in Weinstein setting, Indian J. Pure Appl. Math., 51, 4, 1697-1712, 2020 · Zbl 1472.43005 · doi:10.1007/s13226-020-0490-9
[29] Saoudi, A., On the Weinstein-Wigner transform and Weinstein-Weyl transform, J. Pseudo Differ. Oper. Appl., 11, 1-14, 2020 · Zbl 1437.35183 · doi:10.1007/s11868-019-00313-2
[30] Saoudi, A.; Bochra, N., Boundedness and compactness of localization operators for Weinstein-Wiener transform, J. Pseudo Differ. Oper. Appl., 11, 675-702, 2020 · Zbl 1453.43002 · doi:10.1007/s11868-020-00328-0
[31] Trimèche, K., Convergence des séries de Taylor généralisées au sens de Delsarte, C. R. Acad. Sci. Paris, 281, 1015-1017, 1975 · Zbl 0315.40002
[32] Watson, GN, A Treatise on the Theory of Bessel Functions, 1990, Cambridge: Cambridge University Press, Cambridge
[33] Weinstein, A.: Singular partial differential equations and their applications. In: Fluid Dynamics and Applied Mathematics, pp. 29-49 (1962) · Zbl 0142.07303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.