×

Inequalities related to spherical harmonics associated with the Weinstein operator. (English) Zbl 1527.33010

Summary: We establish a Babenko type inequality for the Weinstein transform which allows us to obtain, for \(2 \leq p < \infty\), a reverse Hölder inequality for the spherical harmonics associated with the Weinstein operator. Also, we give, for \(1 \leq p \leq 2\), another reverse Hölder inequality obtained by using the zonal. Next, we study the weighted \((L^p,L^q)\) Pitt inequalities for the Weinstein transform. The case \(p = 2\) is studied separately and as a consequence, we derive a logarithmic uncertainty principle for the Weinstein transform.

MSC:

33C55 Spherical harmonics
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A20 Integral transforms of special functions
Full Text: DOI

References:

[1] Ben Nahia, Z, Ben Salem, N. Spherical harmonics and applications associated with the Weinstein operator. In: Král J, Lukeś J, Netuka I, Veselý J, editors. Potential Theory-ICPT 94. Berlin-New York: Walter de Gruter; 1996. p. 233-241. · Zbl 0858.33008
[2] Brelot, M. Equation de Weinstein et potentiels de Marcel Riesz. Séminaire de Thèorie du Potentiel, No. 3 (Paris, 1976/1977). 1978. p. 18-38. (Lect notes math; 681). French. · Zbl 0386.31007
[3] Aliev, I.; Boris, R., Spherical harmonics associated to the Laplace-Bessel operator and generalized spherical convolutions, Anal Appl, 1, 1, 81-109 (2003) · Zbl 1060.42020
[4] Ben Nahia, Z, Ben Salem, N. On a mean value property associated with the Weinstein operator. In: Král J, Lukeś J, Netuka I, Veselý J, editors. Potential Theory-ICPT 94. Berlin-New York: Walter de Gruter; 2011. p. 243-253. · Zbl 0858.35006
[5] Ben Salem, N., Hardy-Littlewood-Sobolev type inequalities associated with the Weinstein operator, Integral Transform Spec Funct, 31, 1, 18-35 (2020) · Zbl 1427.42029
[6] Ben Salem, N.; Nasr, AR., Heisenberg-type inequalities for the Weinstein operator, Integral Transform Spec Funct, 26, 9, 700-718 (2015) · Zbl 1322.42012
[7] Mejjaoli, H., Heat equations associated with Weinstein operator and applications, J Funct Spaces Appl (2013) · Zbl 1298.46036
[8] Beckner, W., Inequalities in Fourier analysis on \(####\), Proc Natl Acad Sci, 72, 638-641 (1975) · Zbl 0303.42020
[9] Fitouhi, A., Inégalité de Babenko et inégalité logarithmique de Sobolev pour l’opérateur de Bessel [Babenko inequality and logarithmic Sobolev inequality for the Bessel operator], C R Acad Sci Paris Sér I Math, 305, 20, 877-880 (1987) · Zbl 0631.41016
[10] Duoandikoetxea, J., Reverse Hölder inequalities for spherical harmonics, Proc Amer Math Soc, 101, 3, 487-491 (1987) · Zbl 0696.41012
[11] Dai, F.; Feng, H.; Tikhonov, S., Reverse Hölder’s inequality for spherical harmonics, Proc Amer Math Soc, 144, 3, 1041-1051 (2016) · Zbl 1366.33009
[12] Beckner, W., Pitt’s inequality and the uncertainty principle, Proc Amer Math Soc, 123, 6, 1897-1905 (1995) · Zbl 0842.58077
[13] De Carli, L.; Gorbachev, D.; Tikhonov, S., Pitt and Boas inequalities for Fourier and Hankel transforms, J Math Anal Appl, 408, 2, 762-774 (2013) · Zbl 1307.44004
[14] Soltani, F., Pitt’s inequality and logarithmic uncertainty principle for the Dunkl transform on R, Acta Math Hungar, 143, 2, 480-490 (2014) · Zbl 1324.42013
[15] Soltani, F., Pitt’s inequalities for the Dunkl transform on \(####\), Integral Transform Spec Funct, 25, 9, 686-696 (2014) · Zbl 1305.44005
[16] Gorbachev, DV; Ivanov, VI; Tikhonov, SY., Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in \(####\), J Approx Theory, 202, 109-118 (2016) · Zbl 1334.42020
[17] Gorbachev, DV; Ivanov, VI; Tikhonov, SY., Pitt’s inequalities and uncertainty principle for generalized Fourier transform, Int Math Res Not, 23, 779-7200 (2016) · Zbl 1404.42019
[18] De Carli, L., On the Lp-Lq norm of the Hankel transform and related operators, J Math Anal Appl, 348, 1, 366-382 (2008) · Zbl 1153.44002
[19] Chettaoui, C.; Trimèche, K., Bochner-Hecke theorems for the Weinstein transform and application, Fract Calc Appl Anal, 13, 3, 261-280 (2010) · Zbl 1226.42006
[20] Yafaev, D., Sharp constants in the Hardy-Rellich inequalities, J Funct Anal, 168, 1, 121-144 (1999) · Zbl 0981.26016
[21] Mejjaoli, H.; Salhi, M., Uncertainty principles for the Weinstein transform, Czechoslovak Math J, 61, 4, 941-974 (2011) · Zbl 1249.35034
[22] Mejjaoli, H., Hardy-type inequalities associated with the Weinstein operator, J Inequal Appl, 267 (2015) · Zbl 1336.35017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.