×

Instability of homogeneous steady states in chemotaxis systems with flux limitation. (English) Zbl 07835175

The authors consider the parabolic-elliptic chemotaxis model with flux limitation \[ \begin{cases} u_t = \Delta u - \nabla \cdot (u (1 + |\nabla v|^2)^\frac{\alpha-2}{2}) \nabla v), \\ 0 = \Delta v - \mu + u, \quad \mu = \frac{1}{|\Omega|} \int_\Omega u_0, \end{cases} \] complemented with Neumann boundary and initial conditions, in smooth, bounded domains \(\Omega \subset \mathbb R^n\), \(n \ge 3\). In [M. Winkler, Indiana Univ. Math. J. 71, No. 4, 1437–1465 (2022; Zbl 1501.35094)] it has been shown that all solutions are global in time if \(\alpha < \frac{n-1}{n}\) but when \(\alpha > \frac{n-1}{n}\), for each \(\mu > 0\) one can find initial data \(u_0\) with \(\frac{1}{|\Omega|} \int_\Omega u_0 = \mu\) such that the corresponding solution blows up in finite time.
The authors show that a critical mass phenomenon detected in [M. Winkler, Math. Ann. 373, No. 3–4, 1237–1282 (2019; Zbl 1416.35049)] for \(\alpha = 2\) also holds in the regime \(\alpha \in [\frac{n}{n-1}, 2)\). That is, their main result states that if \(\mu\) is large enough and \(\Omega\) is a ball, all radially symmetric initial data strictly more concentrated than the average mass lead to finite-time blow-up, while in contrast for sufficiently small \(\mu\), the homogeneous steady state \((\mu, \mu)\) is locally asymptotically stable with respect to the \(L^\infty\) topology.
The blow-up proof relies on an intricate comparison argument for the transformed quantity \(\int_0^{\xi^\frac1n} \rho^{n-1} u(\rho, t) \,\mathrm d\rho\), while the stability result is obtained by semigroup arguments.

MSC:

35B44 Blow-up in context of PDEs
35B33 Critical exponents in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35K55 Nonlinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Arumugam, G.; Tyagi, J., Keller-Segel chemotaxis models: a review, Acta Appl. Math., 171, 82, 2021, Paper No. 6 · Zbl 1464.35001
[2] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci., 20, 7, 1179-1207, 2010 · Zbl 1402.92065
[3] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 9, 1663-1763, 2015 · Zbl 1326.35397
[4] Bellomo, N.; Winkler, M., A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up, Comm. Partial Differential Equations, 42, 3, 436-473, 2017 · Zbl 1430.35166
[5] Bellomo, N.; Winkler, M., Finite-time blow-up in a degenerate chemotaxis system with flux limitation, Trans. Am. Math. Soc. Ser. B, 4, 31-67, 2017 · Zbl 1367.35044
[6] Cao, X., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35, 5, 1891-1904, 2015 · Zbl 1515.35047
[7] Chiyoda, Y.; Mizukami, M.; Yokota, T., Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation, Acta Appl. Math., 167, 231-259, 2020 · Zbl 1439.35085
[8] Cieślak, T.; Winkler, M., Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21, 5, 1057-1076, 2008 · Zbl 1136.92006
[9] Colasuonno, F.; Winkler, M., Stability vs. instability of singular steady states in the parabolic-elliptic Keller-Segel system on \(\mathbb{R}^n\), Ann. Sc. Norm. Super. Pisa Cl. Sci., 5, 31, 2023
[10] Fuhrmann, J.; Lankeit, J.; Winkler, M., A double critical mass phenomenon in a no-flux-Dirichlet Keller-Segel system, J. Math. Pures Appl., 162, 9, 124-151, 2022 · Zbl 1494.35047
[11] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217, 2009 · Zbl 1161.92003
[12] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver., 105, 3, 103-165, 2003 · Zbl 1071.35001
[13] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12, 2, 159-177, 2001 · Zbl 1017.92006
[14] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329, 2, 819-824, 1992 · Zbl 0746.35002
[15] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 3, 399-415, 1970 · Zbl 1170.92306
[16] Kohatsu, S.; Yokota, T., Stability of constant equilibria in a Keller-Segel system with gradient dependent chemotactic sensitivity, Matematiche (Catania), 78, 1, 213-237, 2023 · Zbl 1527.35074
[17] Mao, X.; Li, Y., Critical mass for Keller-Segel systems with supercritical nonlinear sensitivity, Math. Models Methods Appl. Sci., 33, 11, 2395-2423, 2023 · Zbl 1523.35032
[18] Mao, X.; Li, Y., Dirac-type aggregation with full mass in a chemotaxis model, Discrete Contin. Dyn. Syst. Ser. S, 2023
[19] Marras, M.; Vernier-Piro, S.; Yokota, T., Blow-up phenomena for a chemotaxis system with flux limitation, J. Math. Anal. Appl., 515, 1, 13, 2022, Paper No. 126376 · Zbl 1497.35064
[20] Marras, M.; Vernier-Piro, S.; Yokota, T., Behavior in time of solutions of a Keller-Segel system with flux limitation and source term, NoDEA Nonlinear Differential Equations Appl., 30, 5, 27, 2023, Paper No. 65 · Zbl 1523.35072
[21] Mizukami, M.; Ono, T.; Yokota, T., Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system with flux limitation, J. Differential Equations, 267, 9, 5115-5164, 2019 · Zbl 1475.35060
[22] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5, 2, 581-601, 1995 · Zbl 0843.92007
[23] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40, 3, 411-433, 1997, URL http://www.math.kobe-u.ac.jp/fe/xml/mr1610709.xml · Zbl 0901.35104
[24] Negreanu, M.; Tello, J. I., On a parabolic-elliptic system with gradient dependent chemotactic coefficient, J. Differential Equations, 265, 3, 733-751, 2018 · Zbl 1391.35186
[25] Osaki, K.; Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44, 3, 441-469, 2001, URL http://www.math.kobe-u.ac.jp/fe/xml/mr1893940.xml · Zbl 1145.37337
[26] Perthame, B.; Vauchelet, N.; Wang, Z., The flux limited Keller-Segel system; properties and derivation from kinetic equations, Rev. Mat. Iberoam., 36, 2, 357-386, 2020 · Zbl 1441.35056
[27] Tao, Y.; Winkler, M., Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc. (JEMS), 19, 12, 3641-3678, 2017 · Zbl 1406.35068
[28] Tello, J. I., Blow up of solutions for a parabolic-elliptic chemotaxis system with gradient dependent chemotactic coefficient, Comm. Partial Differential Equations, 47, 2, 307-345, 2022 · Zbl 1491.35071
[29] Tu, X.; Mu, C.; Zheng, P., On effects of the nonlinear signal production to the boundedness and finite-time blow-up in a flux-limited chemotaxis model, Math. Models Methods Appl. Sci., 32, 4, 647-711, 2022 · Zbl 1491.35072
[30] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 12, 2889-2905, 2010 · Zbl 1190.92004
[31] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100, 5, 748-767, 2013 · Zbl 1326.35053
[32] Winkler, M., How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases, Math. Ann., 373, 3-4, 1237-1282, 2019 · Zbl 1416.35049
[33] Winkler, M., A critical blow-up exponent for flux limitation in a Keller-Segel system, Indiana Univ. Math. J., 71, 4, 1437-1465, 2022 · Zbl 1501.35094
[34] Winkler, M., A unifying approach toward boundedness in Keller-Segel type cross-diffusion systems via conditional \(L^\infty\) estimates for taxis gradients, Math. Nachr., 295, 9, 1840-1862, 2022 · Zbl 1525.35050
[35] Winkler, M.; Djie, K. C., Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72, 2, 1044-1064, 2010 · Zbl 1183.92012
[36] Yan, J.; Li, Y., Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity, Electron. J. Differential Equations, 14, 2020, Paper No. 122 · Zbl 1454.35212
[37] Yi, H.; Mu, C.; Qiu, S.; Xu, L., Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production, Commun. Pure Appl. Anal., 20, 11, 3825-3849, 2021 · Zbl 1479.35121
[38] Zhigun, A., Flux limitation mechanisms arising in multiscale modelling of cancer invasion, Math. Proc. R. Ir. Acad., 122A, 1, 5-26, 2022 · Zbl 1492.35388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.