×

Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. (English) Zbl 1402.92065

Summary: This paper deals with the derivation of macroscopic tissue models from the underlying description delivered by a class of equations that models binary mixtures of multicellular systems by methods of the kinetic theory for active particles. Cellular interactions generate both modification of the biological functions and proliferative and destructive events. The asymptotic analysis deals with suitable parabolic and hyperbolic limits, and is specifically focused on the modeling of the chemotaxis phenomena.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

Chemotaxis
Full Text: DOI

References:

[1] Anderson, A. R. A.Quaranta, V., Nature Rev. Cancer8, 227 (2008), DOI: 10.1038/nrc2329.
[2] F. Andreu, J. Calvo, J. M. Mazón and J. Soler, On a nonlinear flux-limited equation arising in the transport of morphogens, to appear in Arch. Rational Mech. Anal. · Zbl 1263.35166
[3] F. Andreu, V. Caselles, J. M. Mazón, J. Soler and M. Verbeni, Radially symmetric solutions of a tempered diffusion equation. The porous media-flux-limited case, preprint (2009).
[4] Andreu, F.Caselles, V.Mazón, J. M., Arch. Rational Mech. Anal.176, 415 (2005), DOI: 10.1007/s00205-005-0358-5. · Zbl 1112.35111
[5] Andreu, F.Caselles, V.Mazón, J. M., Nonlinear Anal. TMA61, 637 (2005), DOI: 10.1016/j.na.2004.11.020.
[6] Andreu, F.Caselles, V.Mazón, J. M., J. Euro. Math. Soc.7, 361 (2005). · Zbl 1082.35089
[7] Andreu, F.Caselles, V.Mazón, J. M., J. Diff. Eqns.245, 3639 (2008), DOI: 10.1016/j.jde.2008.06.024.
[8] Andreu, F.et al., Arch. Rational Mech. Anal.182, 269 (2006), DOI: 10.1007/s00205-006-0428-3.
[9] Bellomo, N.Bellouquid, A., Int. J. Nonlinear Mech.41, 281 (2006), DOI: 10.1016/j.ijnonlinmec.2005.07.006.
[10] Bellomo, N.Bellouquid, A., Nonlinear Anal. Hybrid Syst.3, 215 (2009), DOI: 10.1016/j.nahs.2009.01.004.
[11] Bellomo, N.Bellouquid, A.Herrero, M. A., Comp. Math. Appl.53, 647 (2007), DOI: 10.1016/j.camwa.2006.02.028.
[12] Bellomo, N.et al., Math. Models Methods Appl. Sci.17, 1675 (2007), DOI: 10.1142/S0218202507002431.
[13] Bellomo, N.Bianca, C.Delitala, M., Phys. Life Rev.6, 144 (2009), DOI: 10.1016/j.plrev.2009.06.002.
[14] Bellomo, N.Delitala, M., Phys. Life Rev.5, 183 (2008), DOI: 10.1016/j.plrev.2008.07.001.
[15] Bellomo, N.Forni, G., Current Top. Develop. Biol.81, 485 (2008), DOI: 10.1016/S0070-2153(07)81017-9.
[16] Bellouquid, A.Delitala, M., Z. Agnew. Math. Phys.55, 295 (2004), DOI: 10.1007/s00033-003-3057-9.
[17] Bellouquid, A.Delitala, M., Math. Models Methods Appl. Sci.15, 1639 (2005), DOI: 10.1142/S0218202505000923. · Zbl 1093.82016
[18] Bellouquid, A.; Delitala, M., Mathematical Modeling of Complex Biological Systems, 2006, Birkhäuser · Zbl 1178.92002
[19] A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernández, Asymptotic behavior for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, preprint.
[20] Brenier, Y., Optimal Transportation and Applications, 1813, eds. Caffarelli, L. A.Salsa, S. (Springer-Verlag, 2003) pp. 91-122.
[21] Bonilla, L.Soler, J., Math. Models Methods Appl. Sci.11, 1457 (2001), DOI: 10.1142/S0218202501001410.
[22] N. Bournaveas, A. Bugin, V. Calvez, B. Perthame, J. Saragosti and P. Silberzan, Mathematical description of bacterial travelling pulses, preprint (2010).
[23] A. Callejo, E. Mollica, A. Bilioni, N. Gorfinkiel, C. Torroja, L. Doglio, J. Sierra, J. Ibenez and I. Guerrero, A cytoneme-mediated baso-lateral transport, controlled by Dispatched, iHog and Dally-like, operates in Hedgehog gradient formation, preprint.
[24] J. Calvo, J. M. Mazón and J. Soler, Analysis of a nonlinear flux-limited system in chemotaxis, work in preparation.
[25] Cattaneo, C., Atti. del Sem. Mat. Univ. Modena3, 83 (1948).
[26] Chalub, F. A.et al., Monatsh. Math.142, 123 (2004), DOI: 10.1007/s00605-004-0234-7.
[27] Chalub, F. A.et al., Math. Model. Meth. Appl. Sci.16, 1173 (2006), DOI: 10.1142/S0218202506001509.
[28] Chavanis, P. H., Euro. Phys. J. B52, 433 (2006).
[29] P. H. Chavanis, Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, arXiv:0709.1829v1.
[30] P. H. Chavanis and C. Sire, Jeans type analysis of chemotactic collapse, arXiv:0708.3163v1.
[31] Dessaud, E.et al., Nature450, 717 (2007), DOI: 10.1038/nature06347.
[32] Dolbeault, J.Schmeiser, C., Disc. Cont. Dyn. Syst.25, 109 (2009), DOI: 10.3934/dcds.2009.25.109. · Zbl 1180.35131
[33] Folkman, J.Kerbel, K., Nature Rev. Cancer2, 727 (2002).
[34] Folkman, J., Sem. Oncol.29, 15 (2002).
[35] Filbet, F.Laurençot, P.Perthame, B., J. Math. Biol.50, 189 (2005), DOI: 10.1007/s00285-004-0286-2.
[36] Goudon, T.et al., J. Diff. Eqns.213, 418 (2005), DOI: 10.1016/j.jde.2004.09.008.
[37] T. Goudon, J. Nieto, O. Sánchez and J. Soler, Vanishing viscosity regimes and nonstandard shock relations for semiconductor superlattices models, preprint. · Zbl 1213.35354
[38] Goudon, T.et al., SIAM J. Appl. Math.64, 1526 (2004).
[39] Hadeler, K. P., Mathematics Inspired by Biology, , eds. Capasso, V.Diekmann, O. (Springer, Florence, 1998) p. 95.
[40] Hillen, T., Math. Models Methods Appl. Sci.8, 507 (1998), DOI: 10.1142/S0218202598000238.
[41] Hartwell, H. L.et al., Nature402, c47 (1999), DOI: 10.1038/35011540.
[42] Herrero, M. A.Köhn, A.Pérez-Pomares, J. M., Math. Models Methods Appl. Sci.19, 1483 (2009), DOI: 10.1142/S021820250900384X. · Zbl 1180.35286
[43] Hillen, T.Othmer, H., SIAM J. Appl. Math.61, 751 (2000). · Zbl 1002.35120
[44] Keller, E. F.Segel, L. A., J. Theor. Biol.26, 399 (1970), DOI: 10.1016/0022-5193(70)90092-5.
[45] Keller, E. F.Segel, L. A., J. Theor. Biol.30, 225 (1971), DOI: 10.1016/0022-5193(71)90050-6.
[46] Keller, E. F.Segel, L. A., J. Theor. Biol.30, 235 (1971), DOI: 10.1016/0022-5193(71)90051-8.
[47] Keller, E. F., Assessing the Keller-Segel model: How has it fared?, Biological Growth and Spread Proc. Conf. (Springer, 1980) pp. 379-387. · Zbl 0437.92003
[48] Lachowicz, M., Math. Models Methods Appl. Sci.15, 1667 (2005), DOI: 10.1142/S0218202505000935.
[49] Othmer, H. G.Dunbar, S. R.Alt, W., J. Math. Biol.26, 263 (1988), DOI: 10.1007/BF00277392. · Zbl 0713.92018
[50] Othmer, H. G.Hillen, T., SIAM J. Appl. Math.62, 1222 (2002), DOI: 10.1137/S0036139900382772.
[51] Patlak, C. S., Bull. Math. Biophys.15, 311 (1953), DOI: 10.1007/BF02476407.
[52] Perthame, B., Bull. Amer. Math. Soc.41, 205 (2004), DOI: 10.1090/S0273-0979-04-01004-3.
[53] Poupaud, F.Soler, J., Math. Models Methods Appl. Sci.10, 1027 (2000). · Zbl 1018.76048
[54] Rosenau, P., Phys. Rev. A41, 2227 (1990), DOI: 10.1103/PhysRevA.41.2227.
[55] Rosenau, P., Phys. Rev. A46, 7371 (1992), DOI: 10.1103/PhysRevA.46.R7371.
[56] Rubin, M. B., Int. J. Engrg. Sci.30, 1665 (1992), DOI: 10.1016/0020-7225(92)90134-3.
[57] Weinberg, R. A., The Biology of Cancer, 2007, Taylor and Francis
[58] Vázquez, J. L., The Porous Medium Equation, 2006, Oxford Univ. Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.