×

An efficient iterative method for multi-order nonlinear fractional differential equations based on the integrated Bernoulli polynomials. (English) Zbl 07830978

Summary: We present an effective practical approach for solving multi-order nonlinear fractional differential equations. Our method uses integrated Bernoulli polynomials and comes with a comprehensive convergence analysis. The integrated Bernoulli polynomials are combined with the collocation and simple iteration methods to approximate the solutions. We have provided several numerical examples to demonstrate the effectiveness, strength, and flexibility of our method. The results obtained from implementing the method have been compared with exact solutions and results obtained from other methods mentioned in the articles.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
26A33 Fractional derivatives and integrals
34L30 Nonlinear ordinary differential operators
33F05 Numerical approximation and evaluation of special functions
41A10 Approximation by polynomials
Full Text: DOI

References:

[1] Abd-Elhameed, WM; Alsuyuti, MM, Numerical treatment of multi-term fractional differential equations via new kind of generalized chebyshev polynomials, Fractal Fract, 7, 1, 74 (2023) · doi:10.3390/fractalfract7010074
[2] Alipour, M.; Agahi, H., New computational techniques for solving nonlinear problems using g-fractional differential operator, J Comput Appl Math, 330, 70-74 (2018) · Zbl 1379.34006 · doi:10.1016/j.cam.2017.08.004
[3] Alqhtani, M.; Owolabi, KM; Saad, KM; Pindza, E., Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology, Chaos, Solitons & Fractals, 161 (2022) · Zbl 1504.35611 · doi:10.1016/j.chaos.2022.112394
[4] Amin, R.; Shah, K.; Mlaiki, N.; Yüzbaşi, Ş.; Abdeljawad, T.; Hussain, A., Existence and numerical analysis using Haar wavelet for fourth-order multi-term fractional differential equations, Comput Appl Math, 41, 7, 329 (2022) · Zbl 1513.65397 · doi:10.1007/s40314-022-02041-8
[5] Azarnavid, B., The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis, Comput Appl Math, 42, 1, 1-17 (2023) · Zbl 1538.45007 · doi:10.1007/s40314-022-02148-y
[6] Azarnavid, B.; Emamjomeh, M.; Nabati, M., A shooting like method based on the shifted Chebyshev polynomials for solving nonlinear fractional multi-point boundary value problem, Chaos, Solitons & Fractals, 159 (2022) · Zbl 1505.34008 · doi:10.1016/j.chaos.2022.112159
[7] Bakhshandeh-Chamazkoti, R.; Alipour, M., Lie symmetries reduction and spectral methods on the fractional two-dimensional heat equation, Math Comput Simul, 200, 97-107 (2022) · Zbl 1540.35432 · doi:10.1016/j.matcom.2022.04.015
[8] Bhrawy, AH; Tohidi, E.; Soleymani, F., A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl Math Comput, 219, 2, 482-497 (2012) · Zbl 1302.65274
[9] Bhrawy, AH; Taha, TM; Machado, JAT, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn, 81, 1023-1052 (2015) · Zbl 1348.65106 · doi:10.1007/s11071-015-2087-0
[10] Chen, X.; Lei, S.; Wang, L., Bernoulli Polynomials Collocation Method for Multi-term Fractional Differential Equations, IAENG Int J Appl Math, 50, 3, 1-8 (2020)
[11] Chen, W.; Sun, H.; Li, X., Fractional derivative modeling in mechanics and engineering (2022), New York: Springer, New York · Zbl 1492.74001 · doi:10.1007/978-981-16-8802-7
[12] Dadkhah, E.; Shiri, B.; Ghaffarzadeh, H.; Baleanu, D., Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods, J Appl Math Comput, 63, 29-57 (2020) · Zbl 1490.74071 · doi:10.1007/s12190-019-01307-5
[13] Diethelm, K., The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type (2010), Berlin: Springer, Berlin · Zbl 1215.34001
[14] Diethelm, K.; Ford, NJ, Multi-order fractional differential equations and their numerical solutions, Appl Math Comput, 154, 621-640 (2004) · Zbl 1060.65070
[15] Eftekhari, T.; Rashidinia, J., A new operational vector approach for time-fractional subdiffusion equations of distributed order based on hybrid functions, Mathematical Methods in the Applied Sciences, 46, 1, 388-407 (2023) · Zbl 1531.35354 · doi:10.1002/mma.8517
[16] El-Sayed, AMA; El-Kalla, IL; Ziada, EAA, Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl Numer Math, 60, 8, 788-797 (2010) · Zbl 1192.65092 · doi:10.1016/j.apnum.2010.02.007
[17] Erturk VS, Alomari AK, Kumar P, Murillo-Arcila M (2022) Analytic solution for the strongly nonlinear multi-order fractional version of a BVP occurring in chemical reactor theory, Discrete Dynamics in Nature and Society 2022 · Zbl 1490.34006
[18] Gil A, Segura J, Temme NM (2007) Numerical methods for special functions. Society for Industrial and Applied Mathematics · Zbl 1144.65016
[19] Gould, WH, Explicit formulas for Bernoulli numbers, Am Math Mon, 79, 1, 44-51 (1972) · Zbl 0227.10010 · doi:10.1080/00029890.1972.11992980
[20] Izadi, M.; Cattani, C., Generalized Bessel polynomial for multi-order fractional differential equations, Symmetry, 12, 8, 1260 (2020) · doi:10.3390/sym12081260
[21] Joujehi, AS; Derakhshan, MH; Marasi, HR, An efficient hybrid numerical method for multi-term time fractional partial differential equations in fluid mechanics with convergence and error analysis, Commun Nonlinear Sci Numer Simul, 114 (2022) · Zbl 1502.65161 · doi:10.1016/j.cnsns.2022.106620
[22] Khan NA, Ibrahim Khalaf O, Andres Tavera Romero C, Sulaiman M., Bakar M.A. (2022) Application of intelligent paradigm through neural networks for numerical solution of multiorder fractional differential equations, Computational Intelligence and Neuroscience 2022
[23] Khodabandelo, HR; Shivanian, E.; Abbasbandy, S., A novel shifted Jacobi operational matrix method for nonlinear multi-terms delay differential equations of fractional variable-order with periodic and anti-periodic conditions, Mathematical Methods in the Applied Sciences, 45, 16, 10116-10135 (2022) · Zbl 1538.65419 · doi:10.1002/mma.8358
[24] Lehmer, DH, A new approach to Bernoulli polynomials, Am Math Mon, 95, 10, 905-911 (1988) · Zbl 0663.10009 · doi:10.1080/00029890.1988.11972114
[25] Nagy, AM, Numerical solutions for nonlinear multi-term fractional differential equations via Dickson operational matrix, Int J Comput Math, 99, 7, 1505-1515 (2022) · Zbl 1524.65297 · doi:10.1080/00207160.2021.1986214
[26] Napoli, A., Solutions of linear second order initial value problems by using Bernoulli polynomials, Appl Numer Math, 99, 109-120 (2016) · Zbl 1329.65146 · doi:10.1016/j.apnum.2015.08.011
[27] Odibat, Z.; Baleanu, D., Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative, Chin J Phys, 77, 1003-1014 (2022) · doi:10.1016/j.cjph.2021.08.018
[28] Postavaru O (2022) Generalized fractional-order hybrid of block-pulse functions and Bernoulli polynomials approach for solving fractional delay differential equations, Soft Computing: 1-13
[29] Postavaru, O.; Toma, A., A numerical approach based on fractional-order hybrid functions of block-pulse and Bernoulli polynomials for numerical solutions of fractional optimal control problems, Math Comput Simul, 194, 269-284 (2022) · Zbl 1540.34026 · doi:10.1016/j.matcom.2021.12.001
[30] B. Prakash, A. Setia and S. Bose, Numerical solution for a system of fractional differential equations with applications in fluid dynamics and chemical engineering, International Journal of Chemical Reactor Engineering 15(5) (2017)
[31] Rezabeyk S, Abbasbandy S, Shivanian E, Derili H (2023) A new approach to solve weakly singular fractional-order delay integro-differential equations using operational matrices, Journal of Mathematical Modeling · Zbl 07814801
[32] Shi, J.; He, K.; Fang, H., Chaos, Hopf bifurcation and control of a fractional-order delay financial system, Math Comput Simul, 194, 348-364 (2022) · Zbl 1540.91103 · doi:10.1016/j.matcom.2021.12.009
[33] Shiralashetti, SC; Deshi, AB, An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dyn, 83, 293-303 (2016) · doi:10.1007/s11071-015-2326-4
[34] Talib, I.; Raza, A.; Atangana, A.; Riaz, MB, Numerical study of multi-order fractional differential equations with constant and variable coefficients, Journal of Taibah University for Science, 16, 1, 608-620 (2022) · doi:10.1080/16583655.2022.2089831
[35] Verma P, Kumar M (2022) Analytical solution with existence and uniqueness conditions of non-linear initial value multi-order fractional differential equations using Caputo derivative, Engineering with Computers: 1-18 · Zbl 07584746
[36] Zhang, B.; Tang, Y.; Zhang, X., Numerical solution of fractional differential equations using hybrid Bernoulli polynomials and block pulse functions, Mathematical Sciences, 15, 293-304 (2021) · Zbl 1486.35452 · doi:10.1007/s40096-021-00379-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.