×

The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis. (English) Zbl 1538.45007

Summary: We propose an effective method based on the reproducing kernel theory for nonlinear Volterra integro-differential equations of fractional order. Based on the Bernoulli polynomials bases, we construct some reproducing kernels of finite-dimensional reproducing kernel Hilbert spaces. Then, based on the constructed reproducing kernels, we develop an efficient method for solving the nonlinear Volterra integro-differential equations of fractional order. We reduce the nonlinear Volterra integro-differential equations of fractional order to the nonlinear Volterra integral equations of the second kind and use a simple iteration to overcome the nonlinearity of the problem. In fact, we are looking for an approximate solution to the problem in a finite-dimensional reproducing kernel Hilbert space. We investigate the convergence analysis of the proposed method thoroughly. Several numerical simulations are presented to demonstrate the performance of the method. The obtained numerical results confirm the theoretical results and show the efficiency and accuracy of the proposed method.

MSC:

45J05 Integro-ordinary differential equations
45L05 Theoretical approximation of solutions to integral equations
45D05 Volterra integral equations
26A33 Fractional derivatives and integrals
65R20 Numerical methods for integral equations
Full Text: DOI

References:

[1] Ahmed, E.; Elgazzar, AS, On fractional order differential equations model for nonlocal epidemics, Phys A, 379, 2, 607-614 (2007) · doi:10.1016/j.physa.2007.01.010
[2] Amin, R.; Ahmad, H.; Shah, K.; Hafeez, MB; Sumelka, W., Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method, Chaos Solitons Fract, 151 (2021) · Zbl 1498.34208 · doi:10.1016/j.chaos.2021.111252
[3] Arqub, OA; Osman, MS; Park, C.; Lee, JR; Alsulami, H.; Alhodaly, M., Development of the reproducing kernel Hilbert space algorithm for numerical pointwise solution of the time-fractional nonlocal reaction-diffusion equation, Alex Eng J, 61, 12, 10539-10550 (2022) · doi:10.1016/j.aej.2022.04.008
[4] Attia, N.; Akgül, A.; Seba, D.; Nour, A.; Riaz, MB, Reproducing kernel Hilbert space method for solving fractal fractional differential equations, Results Phys, 35 (2022) · doi:10.1016/j.rinp.2022.105225
[5] Azarnavid, B.; Emamjome, M.; Nabati, M.; Abbasbandy, S., A reproducing kernel Hilbert space approach in meshless collocation method, Comput Appl Math, 38, 2, 1-19 (2019) · Zbl 1438.65245 · doi:10.1007/s40314-019-0838-0
[6] Azarnavid, B.; Emamjomeh, M.; Nabati, M., A shooting like method based on the shifted Chebyshev polynomials for solving nonlinear fractional multi-point boundary value problem, Chaos Solitons Fract, 159 (2022) · Zbl 1505.34008 · doi:10.1016/j.chaos.2022.112159
[7] Azarnavid, B.; Emamjomeh, M.; Nabati, M., An efficient kernel-based method for solving nonlinear generalized Benjamin-Bona-Mahony-Burgers equation in irregular domains, Appl Numer Math, 181, 518-533 (2022) · Zbl 1502.65157 · doi:10.1016/j.apnum.2022.07.003
[8] Das, P.; Rana, S.; Ramos, H., On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis, J Comput Appl Math, 404 (2022) · Zbl 1481.65265 · doi:10.1016/j.cam.2020.113116
[9] Gil, A.; Segura, J.; Temme, NM, Numerical methods for special functions, Soc Ind Appl Math, 2, 2 (2007) · Zbl 1144.65016
[10] Heydari, M.; Shivanian, E.; Azarnavid, B.; Abbasbandy, S., An iterative multistep kernel based method for nonlinear Volterra integral and integro-differential equations of fractional order, J Comput Appl Math, 361, 97-112 (2019) · Zbl 1440.65277 · doi:10.1016/j.cam.2019.04.017
[11] Jiang, W.; Tian, T., Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl Math Model, 39, 16, 4871-4876 (2015) · Zbl 1443.65113 · doi:10.1016/j.apm.2015.03.053
[12] Jordan, C., Calculus of finite differences (1965), New York: Chelsea, New York · Zbl 0154.33901
[13] Khaleghi, M.; Moghaddam, MT; Babolian, E.; Abbasbandy, S., Solving a class of singular two-point boundary value problems using new effective reproducing kernel technique, Appl Math Comput, 331, 264-273 (2018) · Zbl 1427.65121 · doi:10.1016/j.amc.2018.03.023
[14] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[15] Lehmer, DH, A new approach to Bernoulli polynomials, Am Math Mon, 95, 10, 905-911 (1988) · Zbl 0663.10009 · doi:10.1080/00029890.1988.11972114
[16] Momani, S.; Noor, MA, Numerical methods for fourth-order fractional integro-differential equations, Appl Math Comput, 182, 1, 754-760 (2006) · Zbl 1107.65120 · doi:10.1016/j.amc.2006.04.041
[17] Monnani, SM, Local and global existence theorems on fractional integro-differential equations, J Fract Calc, 18, 81-86 (2000) · Zbl 0967.45004
[18] Napoli, A., Solutions of linear second order initial value problems by using Bernoulli polynomials, Appl Numer Math, 99, 109-120 (2016) · Zbl 1329.65146 · doi:10.1016/j.apnum.2015.08.011
[19] Saeedi, H.; Moghadam, MM, Numerical solution of nonlinear volterra integro-differential equations of arbitrary order by cas wavelets, Commun Nonlinear Sci Numer Simul, 16, 3, 1216-1226 (2011) · Zbl 1221.65140 · doi:10.1016/j.cnsns.2010.07.017
[20] Saeedi, H.; Moghadam, MM; Mollahasani, N.; Chuev, GN, A cas wavelet method for solving nonlinear fredholm integro-differential equations of fractional order, Commun Nonlinear Sci Numer Simul, 16, 1154-1163 (2011) · Zbl 1221.65354 · doi:10.1016/j.cnsns.2010.05.036
[21] Sahihi, H.; Allahviranloo, T.; Abbasbandy, S., Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl Numer Math, 151, 27-39 (2020) · Zbl 1445.65029 · doi:10.1016/j.apnum.2019.12.008
[22] Talaei, Y.; Micula, S.; Hosseinzadeh, H.; Noeiaghdam, S., A novel algorithm to solve nonlinear fractional quadratic integral equations, AIMS Math, 7, 7, 13237-13257 (2022) · doi:10.3934/math.2022730
[23] Tarasov, VE, Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor Math Phys, 158, 3, 355-359 (2009) · Zbl 1177.78020 · doi:10.1007/s11232-009-0029-z
[24] Wang, Y.; Zhu, L., Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method, Adv Differ Equ, 2017, 1, 1-16 (2017) · Zbl 1422.45001
[25] Zhu, L.; Fan, Q., Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW, Commun Nonlinear Sci Numer Simul, 18, 5, 1203-1213 (2013) · Zbl 1261.35152 · doi:10.1016/j.cnsns.2012.09.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.