×

Bergman projection on Lebesgue space induced by doubling weight. (English) Zbl 07783597

Summary: Let \(\omega\) and \(\nu\) be radial weights on the unit disc of the complex plane, and denote \(\sigma =\omega^{p'} \nu^{-\frac{p'}{p}}\) and \(\omega_x =\int_0^1 \, s^x \omega (s)\,ds\) for all \(1\leq x<\infty\). Consider the one-weight inequality \[ \Vert P_{\omega} (f)\Vert_{L^p_{\nu}}\leq C\Vert f\Vert_{L^p_{\nu}},\quad 1<p<\infty, \qquad \qquad (\dagger) \] for the Bergman projection \(P_{\omega}\) induced by \(\omega\). It is shown that the moment condition \[ D_p (\omega, \nu)=\sup_{n\in\mathbb{N}\cup \{0\}} \frac{\left(\nu_{np+1}\right)^\frac{1}{p}\left(\sigma_{np'+1} \right)^\frac{1}{p'}}{\omega_{2n+1}}<\infty \] is necessary for \((\dagger)\) to hold. Further, \(D_p (\omega, \nu) <\infty\) is also sufficient for \((\dagger)\) if \(\nu\) admits the doubling properties \(\sup_{0\leq r<1}\frac{\int_r^1 \nu (s) s\,ds}{\int_{\frac{1+r}{2}}^1 \nu (s)s\,ds}<\infty\) and \(\sup_{0\leq r<1}\frac{\int_r^1 \nu (s)s\,ds}{\int_r^{1-\frac{1-r}{K}} \nu (s)s\,ds}<\infty\) for some \(K>1\). In addition, an analogous result for the one weight inequality \(\Vert P_{\omega} (f)\Vert_{D^p_{\nu, k}} \leq C\Vert f\Vert_{L^p_{\nu}}\), where \[ \Vert f \Vert_{D^p_{\nu, k}}^p =\sum\limits_{j=0}^{k-1} \vert f^{(j)}(0)\vert^p +\int_{\mathbb{D}} \vert f^{(k)}(z)\vert^p (1-\vert z \vert)^{kp} \nu (z)\,dA(z)<\infty, \quad k\in\mathbb{N}, \] is established. The inequality \((\dagger)\) is further studied by using the necessary condition \(D_p (\omega, \nu)<\infty\) in the case of the exponential type weights \(\nu (r)=\exp \left(-\frac{\alpha}{(1-r^l)^{\beta}}\right)\) and \(\omega (r)= \exp \left(-\frac{\widetilde{\alpha}}{(1-r^{\widetilde{l}})^{\widetilde{\beta}}} \right)\), where \(0<\alpha, \, \widetilde{\alpha},\, l,\, \widetilde{l}<\infty\) and \(0<\beta,\, \widetilde{\beta}\leq 1\).

MSC:

30H20 Bergman spaces and Fock spaces
47G10 Integral operators

References:

[1] Aleman, A.; Constantin, O., The Bergman projection on vector-valued \(L^2\)-spaces with operator-valued weights, J. Funct. Anal., 262, 5, 2359-2378 (2012) · Zbl 1247.46022 · doi:10.1016/j.jfa.2011.12.005
[2] Aleman, A.; Pott, S.; Reguera, MC, Sarason conjecture on the Bergman space, Int. Math. Res. Not. IMRN, 14, 4320-4349 (2017) · Zbl 1405.30055
[3] Bekollé, D.: Inégalités á poids pour le projecteur de Bergman dans la boule unité de \({\mathbb{C} }^n\) [Weighted inequalities for the Bergman projection in the unit ball of \({\mathbb{C} }^n]\). Studia Math. 71(3), 305-323 (1981/82) · Zbl 0516.47016
[4] Bekollé, D.; Bonami, A., Inégalités á poids pour le noyau de Bergman, (French), C. R. Acad. Sci. Paris Sér. A-B, 286, 18, 775-778 (1978) · Zbl 0398.30006
[5] Bonet, J.; Lusky, W.; Taskinen, J., Unbounded Bergman projections on weighted spaces with respect to exponential weights, Integral Equ. Oper. Theory, 93, 6, 20 (2021) · Zbl 1508.47086 · doi:10.1007/s00020-021-02680-2
[6] Constantin, O.; Peláez, JA, Boundedness of the Bergman projection on Lp-spaces with exponential weights, Bull. Sci. Math., 139, 3, 245-268 (2015) · Zbl 1414.30055 · doi:10.1016/j.bulsci.2014.08.012
[7] Dostanić, M., Unboundedness of the Bergman projections on \(L^p\) spaces with exponential weights, Proc. Edinb. Math. Soc. (2), 47, 1, 111-117 (2004) · Zbl 1077.47020 · doi:10.1017/S0013091501000190
[8] Dostanić, M., Integration operators on Bergman spaces with exponential weight, Rev. Mat. Iberoam., 23, 2, 421-436 (2007) · Zbl 1146.47020 · doi:10.4171/RMI/501
[9] Hu, Z.; Lv, X.; Schuster, AP, Bergman spaces with exponential weights, J. Funct. Anal., 276, 5, 1402-1429 (2019) · Zbl 07004955 · doi:10.1016/j.jfa.2018.05.001
[10] Martín Reyes, F.J., Ortega, P., Peláez, J.A., Rättyä, J.: One weight inequality for Bergman projection and Calderón operator induced by radial weight. Proc. Am. Math. Soc. in press · Zbl 1527.30037
[11] Peláez, J.A.: Small weighted Bergman spaces. In: Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics, 29-98, Publ. Univ. East. Finl. Rep. Stud. For. Nat. Sci., 22, Univ. East. Finl., Fac. Sci. For., Joensuu (2016)
[12] Peláez, JA; de la Rosa, E., Littlewood-Paley inequalities forfractional derivative on Bergman spaces, Ann. Fennici Math., 47, 2, 1109-1130 (2022) · Zbl 1532.30017 · doi:10.54330/afm.121831
[13] Peláez, JA; Rättyä, J., Weighted Bergman spaces induced by rapidly increasing weights, Mem. Am. Math. Soc., 227, 1066 (2014) · Zbl 1308.30001
[14] Peláez, JA; Rättyä, J., Two weight inequality for Bergman projection, J. Math. Pures Appl. (9), 105, 1, 102-130 (2016) · Zbl 1337.30064 · doi:10.1016/j.matpur.2015.10.001
[15] Peláez, JA; Rättyä, J., Bergman projection induced by a radial weight, Adv. Math., 391, 70 (2021) · Zbl 1480.30039 · doi:10.1016/j.aim.2021.107950
[16] Peláez, JA; Rättyä, J.; Wick, BD, Bergman projection induced by kernel with integral representation, J. Anal. Math., 138, 1, 325-360 (2019) · Zbl 1468.30094 · doi:10.1007/s11854-019-0035-5
[17] Pott, S.; Reguera, MC, Sharp Bekollé estimate for the Bergman projection, J. Funct. Anal., 265, 3233-3244 (2013) · Zbl 1295.46020 · doi:10.1016/j.jfa.2013.08.018
[18] Zeytuncu, YE, \(L^p\) regularity of weighted Bergman projections, Trans. Am. Math. Soc., 365, 2959-2976 (2013) · Zbl 1278.32007 · doi:10.1090/S0002-9947-2012-05686-8
[19] Zhu, K.: Operator Theory in Function Spaces, 2nd edn, Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence (2007) · Zbl 1123.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.