×

Bergman projection induced by radial weight. (English) Zbl 1480.30039

This paper is a comprehensive study of the Bergman projection induced by a radial weight, which presents some known results on the topic, but also an especially new one, generalizations and solutions for some open problems. A radial weight on the unit disc \(\mathbb D\) is the extension to \(\mathbb D\) of an integrable function \(\omega\) on \([0,1]\) by \(\omega(z)=\omega(|z|)\), \(z\in\mathbb D\). The space \(L^p_\omega\), the Hardy space \(\mathcal{H}(\mathbb D)\), the Bloch space \(\mathcal B\), and the Bergman space \(A^p_\omega=L^p_\omega\cap\mathcal{H}(\mathbb D)\) are considered. For a radial weight \(\omega\), the orthogonal Bergman projection \(P_\omega\) from \(L^2_\omega\) to \(A^2_\omega\) is \[P_\omega(f)(z) =\int_{\mathbb D}f(\zeta)\overline{B^\omega_z(\zeta)}dA(\zeta),\] where \(B^\omega_z\) is the reproducing kernel of \(A^2_\omega\) and \(dA\) is the normalized area measure on \(\mathbb D\). The first main result of this paper (Theorem 1) characterizes the class of radial weights such that \(P_\omega: L^\infty \rightarrow \mathcal B\) is bounded, and establishes the corresponding natural duality relations, under the hypothesis of positivity of the tail integral \(\widehat{\omega}=\int_{|z|}^1\omega(s)ds>0\) for all \(z\in\mathbb D\). A radial weight \(\omega\) belongs to the class \(\widehat{\mathcal D}\) if \(\widehat{\omega}\) satisfies the property \(\widehat{\omega}(r) \le C\widehat{\omega}(\frac{1+r}{2})\) for some constant \(C = C(\omega)\ge 1\) and for all \(0 \le r <1\). For other characterizations the classes \(\check{\mathcal D}\) and \(\mathcal D=\widehat{\mathcal D}\cap\check{\mathcal D}\) are introduced. It is said that \(\omega\in\check{\mathcal D}\) if there exist constants \(K=K(\omega)>1\) and \(C=C(\omega)>1\) such that \(\widehat{\omega}(r)\ge C\widehat{\omega}(1-\frac{1-r}{K})\) for all \(0\le r<1\).
The paper has the following structure. In the first section the main results are presented, contained in eleven main theorems and two important corollaries, establishing characterizations of the radial weights \(\omega\) on the unit disc such that \(P_\omega:L^\infty\rightarrow\mathcal B\) is bounded and/or acts surjectively from \(L^\infty\) to the Bloch space \(\mathcal B\), or the dual of the weighted Bergman space \(A^1_\omega\) is isomorphic to the Bloch space under the \(A^2_\omega\)-pairing. Also the problem posed by M. R. Dostanić [Proc. Edinb. Math. Soc., II. Ser. 47, No. 1, 111–117 (2004; Zbl 1077.47020)] on describing the weights \(\omega\) such that \(P_\omega\) is bounded on the Lebesgue space \(L^p_\omega\) is solved under a weak regularity hypothesis on \(\omega\). With respect to Littlewood-Paley estimates, the radial weights \(\omega\) are characterized such that the norm of any function in \(A^p_\omega\) is comparable to the norm in \(L^p_\omega\) of its derivative times the distance from the boundary, solving another well-known problem on the area. The following six sections are dedicated to the very laborious proofs of the previous presented theorems and results. In the last section of the paper two open problems closely related to the presented results are discussed, and two conjectures are posed. The first problem concerns Littlewood-Paley estimates and the second the boundedness of the Bergman projection \(P_\omega\) on \(L^p_\omega\).

MSC:

30H20 Bergman spaces and Fock spaces
30H10 Hardy spaces

Citations:

Zbl 1077.47020

References:

[1] Aleman, A.; Constantin, O., Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., 109, 199-231 (2009) · Zbl 1207.47042
[2] Aleman, A.; Constantin, O., The Bergman projection on vector-valued \(L^2\)-spaces with operator-valued weights, J. Funct. Anal., 262, 5, 2359-2378 (2012) · Zbl 1247.46022
[3] Aleman, A.; Pott, S.; Reguera, M. C., Sarason conjecture on the Bergman space, Int. Math. Res. Not., 2017, 14, 4320-4349 (2017), (English summary) · Zbl 1405.30055
[4] Aleman, A.; Pott, S.; Reguera, M. C., Characterizations of a limiting class \(B_\infty\) of Békollé-Bonami weights, Rev. Mat. Iberoam., 35, 6, 1677-1692 (2019) · Zbl 1501.30006
[5] Bao, G.; Wulan, H.; Zhu, K., A Hardy-Littlewood theorem for Bergman spaces, Ann. Acad. Sci. Fenn., Math., 43, 807-821 (2018) · Zbl 1407.30029
[6] Bekollé, D., Inégalités á poids pour le projecteur de Bergman dans la boule unité de \(\mathbb{C}^n\), Stud. Math., 71, 3, 305-323 (1981/82) · Zbl 0516.47016
[7] Bekollé, D.; Bonami, A., Inégalités á poids pour le noyau de Bergman, C. R. Acad. Sci. Paris, Sér. A-B, 286, 18, 775-778 (1978), (in French) · Zbl 0398.30006
[8] Boudreaux, B. J., Equivalent Bergman spaces with inequivalent weights, J. Geom. Anal., 29, 1, 217-223 (2019) · Zbl 1414.32010
[9] Constantin, O.; Peláez, J. A., Boundedness of the Bergman projection on \(L^p\) spaces with exponential weights, Bull. Sci. Math., 139, 3, 245-268 (2015) · Zbl 1414.30055
[10] Dostanić, M., Unboundedness of the Bergman projections on \(L^p\) spaces with exponential weights, Proc. Edinb. Math. Soc. (2), 47, 1, 111-117 (2004) · Zbl 1077.47020
[11] Dostanić, M., Boundedness of the Bergman projections on Lp spaces with radial weights, Publ. Inst. Math. (Belgr.), 86, 100, 5-20 (2009) · Zbl 1267.47048
[12] Duren, P., Theory of \(H^p\) Spaces (1970), Academic Press: Academic Press New York-London · Zbl 0215.20203
[13] Duren, P. L.; Schuster, A. P., Bergman Spaces, Math. Surveys and Monographs, vol. 100 (2004), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1059.30001
[14] Hedenmalm, H.; Korenblum, B.; Zhu, K., Theory of Bergman Spaces, Graduate Texts in Mathematics, vol. 199 (2000), Springer: Springer New York, Berlin, etc. · Zbl 0955.32003
[15] Jevtić, M.; Pavlović, M., On multipliers from \(H^p\) to \(l^q, 0 < q < p < 1\), Arch. Math. (Basel), 56, 2, 174-180 (1991) · Zbl 0686.30027
[16] Korhonen, T.; Peláez, J. A.; Rättyä, J., Radial two weight inequality for maximal Bergman projection induced by a regular weight, Potential Anal., 54, 3, 561-574 (2021) · Zbl 1462.30108
[17] Luecking, D., Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J., 34, 2, 319-336 (1985) · Zbl 0538.32004
[18] Mateljević, M.; Pavlović, M., \( L^p\) behaviour of the integral means of analytic functions, Stud. Math., 77, 219-237 (1984) · Zbl 1188.30004
[19] Mateljević, M.; Pavlović, M., Multipliers of \(H^p\) and BMOA, Pac. J. Math., 146, 1, 71-84 (1990) · Zbl 0731.30029
[20] Nazarov, F., A counterexample to Sarason conjecture
[21] Pavlović, M., Mixed norm spaces of analytic and harmonic functions. I, Publ. Inst. Math. (Belgr.), 40, 54, 117-141 (1986) · Zbl 0619.46022
[22] Pavlović, M., Introduction to Function Spaces on the Disk, Posebna Izdanja, vol. 20 (2004), Matematički Institut SANU: Matematički Institut SANU Beograd, available online at: · Zbl 1107.30001
[23] Pavlović, M., Function Classes on the Unit Disc. An Introduction, De Gruyter Studies in Mathematics, vol. 52 (2014), De Gruyter: De Gruyter Berlin, xiv+449 pp. · Zbl 1296.30002
[24] Pavlović, M.; Peláez, J. A., An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr., 281, 11, 1612-1623 (2008) · Zbl 1155.30018
[25] Peláez, J. A., Small weighted Bergman spaces, (Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics (2016))
[26] Peláez, J. A.; Rättyä, J., Generalized Hilbert operators on weighted Bergman spaces, Adv. Math., 240, 227-267 (2013) · Zbl 1288.30060
[27] Peláez, J. A.; Rättyä, J., Weighted Bergman spaces induced by rapidly increasing weights, Mem. Am. Math. Soc., 227, 1066 (2014) · Zbl 1308.30001
[28] Peláez, J. A.; Rättyä, J., Two weight inequality for Bergman projection, J. Math. Pures Appl., 105, 102-130 (2016) · Zbl 1337.30064
[29] Peláez, J. A.; Rättyä, J., On the boundedness of Bergman projection, (Advanced Courses of Mathematical Analysis VI (2017), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 113-132 · Zbl 1371.30049
[30] Peláez, J. A.; Rättyä, J., Harmonic conjugates on Bergman spaces induced by doubling weights, Anal. Math. Phys., 10, 2, Article 18 pp. (2020), 22 pp · Zbl 1436.30046
[31] Peláez, J. A.; Rättyä, J.; Wick, B. D., Bergman projection induced by kernel with integral representation, J. Anal. Math., 138, 1, 325-360 (2019) · Zbl 1468.30094
[32] Perälä, A., Vanishing Bergman kernels on the disk, J. Geom. Anal., 28, 2, 1716-1727 (2018) · Zbl 1404.30064
[33] Perälä, A.; Rättyä, J., Duality of weighted Bergman spaces with small exponents, Ann. Acad. Sci. Fenn., Math., 42, 621-626 (2017) · Zbl 1375.30088
[34] Pott, S.; Reguera, M. C., Sharp Bekollé estimate for the Bergman projection, J. Funct. Anal., 265, 3233-3244 (2013) · Zbl 1295.46020
[35] Shields, A. L.; Williams, D. L., Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Am. Math. Soc., 162, 287-302 (1971) · Zbl 0227.46034
[36] Zeytuncu, Y. E., \( L^p\) regularity of weighted Bergman projections, Trans. Am. Math. Soc., 365, 6, 2959-2976 (2013) · Zbl 1278.32007
[37] Zhu, K., Operator Theory in Function Spaces, Math. Surveys and Monographs, vol. 138 (2007), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1123.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.