×

Anomalous diffusion in rotating Casson fluid through a porous medium. (English) Zbl 07568484

Summary: This paper investigates the space-fractional anomalous diffusion in unsteady Casson fluid through a porous medium, based on an uncoupled continuous time random walk. The influences of binary chemical reaction and activation energy between two horizontal rotating parallel plates are taken into account. The governing equations of motion are reduced to a set of nonlinear differential equations by time derivatives discretization and generalized transformation, which are solved by bvp4c and implicit finite difference method (IFDM). Stability and convergence of IFDM are proved and some numerical comparisons to the previous study are presented with excellent agreement. The effects of involved physical parameters such as fractional derivative parameter, rotation parameter and time parameter are presented and analyzed through graphs. Results indicate that the increase of fractional derivative parameter triggers concentration increase near the lower plate, while it causes a reduction near the upper plate. It is worth mentioning that the decrease of heat transfer rate on the plate is observed with the higher time parameter.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

bvp4c

References:

[1] Jana, R.; Datta, N., Couette flow and heat transfer in a rotating system, Acta Mech., 26, 1-4, 301-306 (1977)
[2] Guria, M.; Jana, R.; Ghosh, S., Unsteady Couette flow in a rotating system, Int. J. Non-Linear Mech., 41, 6-7, 838-843 (2006)
[3] Das, S.; Maji, S.; Guria, M.; Jana, R., Unsteady MHD couette flow in a rotating system, Math. Comput. Modelling, 50, 7-8, 1211-1217 (2009) · Zbl 1185.76915
[4] Kheshgi, H. S.; Scriven, L., Viscous flow through a rotating square channel, Phys. Fluids, 28, 10, 2968-2979 (1985) · Zbl 0573.76039
[5] Takhar, H. S.; Chamkha, A. J.; Nath, G., Flow and heat transfer on a stretching surface in a rotating fluid with a magnetic field, Int. J. Therm. Sci., 42, 1, 23-31 (2003)
[6] Sheikholeslami, M.; Ganji, D., Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Technol., 253, 789-796 (2014)
[7] Ghadikolaei, S.; Hosseinzadeh, K.; Hatami, M.; Ganji, D.; Armin, M., Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation, J. Molecular Liquids, 263, 10-21 (2018)
[8] Hayat, T.; Iram, S.; Javed, T.; Asghar, S., Shrinking flow of second grade fluid in a rotating frame: an analytic solution, Commun. Nonlinear Sci. Numer. Simul., 15, 10, 2932-2941 (2010) · Zbl 1222.76074
[9] Hamad, M. A.A.; Pop, I., Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid, Heat Mass Transf., 47, 12, 1517 (2011)
[10] Sheikholeslami, M.; Ganji, D. D.; Javed, M. Y.; Ellahi, R., Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, J. Magn. Magn. Mater., 374, 36-43 (2015)
[11] Hamid, M.; Usman, M.; Zubair, T.; Haq, R. U.; Wang, W., Shape effects of MoS 2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach, Int. J. Heat Mass Transfer, 124, 706-714 (2018)
[12] Bestman, A., Natural convection boundary layer with suction and mass transfer in a porous medium, Int. J. Energy Res., 14, 4, 389-396 (1990)
[13] Makinde, O. D.; Olanrewaju, P.; Charles, W., Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture, Afr. Mat., 22, 1, 65-78 (2011) · Zbl 1267.80008
[14] Makinde, O. D.; Olanrewaju, P., Unsteady mixed convection with Soret and Dufour effects past a porous plate moving through a binary mixture of chemically reacting fluid, Chem. Eng. Comm., 198, 7, 920-938 (2011)
[15] Awad, F. G.; Motsa, S.; Khumalo, M., Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy, PLoS One, 9, 9, Article e107622 pp. (2014)
[16] Abbas, Z.; Sheikh, M.; Motsa, S., Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation, Energy, 95, 12-20 (2016)
[17] Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M., Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy, AIP Adv., 8, 3, Article 035102 pp. (2018)
[18] Liu, F.; Turner, I.; Anh, V., An unstructured mesh finite volume method for modelling saltwater intrusion into coastal aquifers, J. Appl. Math. Comput., 9, 2, 391-407 (2002) · Zbl 1002.76074
[19] Perdikaris, P.; Karniadakis, G. E., Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng., 42, 5, 1012-1023 (2014)
[20] Ehsani, A.; Mahjani, M.; Bordbar, M.; Adeli, S., Electrochemical study of anomalous diffusion and fractal dimension in poly ortho aminophenol electroactive film: Comparative study, J. Electroanal. Chem., 710, 29-35 (2013)
[21] Qi, H.; Jiang, X., Solutions of the space-time fractional Cattaneo diffusion equation, Physica A, 390, 11, 1876-1883 (2011) · Zbl 1225.35253
[22] Yu, B.; Jiang, X.; Xu, H., A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation, Numer. Algorithms, 68, 4, 923-950 (2015) · Zbl 1314.65114
[23] Zhokh, A. A.; Trypolskyi, A. I.; Strizhak, P. E., An investigation of anomalous time-fractional diffusion of isopropyl alcohol in mesoporous silica, Int. J. Heat Mass Transfer, 104, 493-502 (2017)
[24] Zhang, H.; Jiang, X.; Yang, X., A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput., 320, 302-318 (2018) · Zbl 1427.65313
[25] Pereira, A. P.; Fernandes, J.; Atman, A.; Acebal, J., Parameter calibration between models and simulations: connecting linear and non-linear descriptions of anomalous diffusion, Physica A, 509, 369-382 (2018) · Zbl 1514.82189
[26] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[27] Krepysheva, N.; Di Pietro, L.; Néel, M.-C., Space-fractional advection-diffusion and reflective boundary condition, Phys. Rev. E, 73, 2, Article 021104 pp. (2006)
[28] Pan, M.; Zheng, L.; Liu, F.; Zhang, X., Modeling heat transport in nanofluids with stagnation point flow using fractional calculus, Appl. Math. Modelling, 40, 21, 8974-8984 (2016) · Zbl 1480.76006
[29] Pan, M.; Zheng, L.; Liu, F.; Liu, C.; Chen, X., A spatial-fractional thermal transport model for nanofluid in porous media, Appl. Math. Model., 53, 622-634 (2018) · Zbl 1480.76123
[30] Pal, D.; Roy, N.; Vajravelu, K., Effects of thermal radiation and Ohmic dissipation on MHD Casson nanofluid flow over a vertical non-linear stretching surface using scaling group transformation, Int. J. Mech. Sci., 114, 257-267 (2016)
[31] Saadatmandi, A.; Dehghan, M., A tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl., 62, 3, 1135-1142 (2011) · Zbl 1228.65203
[32] Zhang, X.; Lv, M.; Crawford, J. W.; Young, I. M., The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives, Adv. Water Resour., 30, 5, 1205-1217 (2007)
[33] Pandey, R. K.; Singh, O. P.; Baranwal, V. K., An analytic algorithm for the space-time fractional advection-dispersion equation, Comput. Phys. Comm., 182, 5, 1134-1144 (2011) · Zbl 1217.65196
[34] Shen, S.; Liu, F., Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends, ANZIAM J., 46, 871-887 (2005) · Zbl 1078.65563
[35] Stynes, M.; Gracia, J. L., A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35, 2, 698-721 (2015) · Zbl 1339.65097
[36] Gracia, J. L.; Stynes, M., Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273, 103-115 (2015) · Zbl 1295.65081
[37] Axelsson, O.; Kolotilina, L., Monotonicity and Discretization Error Estimates, 1591-1611 (1990), Society for Industrial and Applied Mathematics · Zbl 0719.65036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.