×

Parameter calibration between models and simulations: connecting linear and non-linear descriptions of anomalous diffusion. (English) Zbl 1514.82189

Summary: Anomalous diffusion is an ubiquitous phenomenon which have been studied by several approaches, including simulation, analytical methods and experiments. Partial differential equations, either fractional linear ones as non-linear, are able to describe the phenomenon, in particular, the heavy tails observed in the probability distribution functions. Besides, one can observe some difficulties to tame the anomalous diffusion parameters in many simulations studies. Consequently, the relationship between simulations results to the corresponding model becomes somewhat impaired. In this work, we present a systematic calibration between simulations and models, exploring the relationship among the diffusion coefficients and diffusion exponents with the order of fractional derivatives, \(q\)-Gaussian parameter and model diffusion constant. By means of a statistical fitting procedure of the simulations data, we establish a connection between linear and non-linear approaches. Simulations considered a CTRW with a criterion to control mean waiting time and step length variance, and a full range of well controlled cases ranging from subdiffusion to superdiffusion regimes were generated. Theoretical models were expressed by means of generalised diffusion equations with fractional derivatives in space and time and by the non-linear porous medium equation. To assess the diffusion constant, the order of fractional derivatives and the \(q\)-Gaussian parameter of simulations data in each case of anomalous diffusion, we compare the accuracy of two methods: (1) by analysis of the dispersion of the variance over time and, (2) by the optimisation of solutions of the theoretical models to the histogram of positions. The relative accuracies of the models were also analysed for each regimen of anomalous diffusion. We highlight relations between simulations parameters and model parameters and discuss methods to link them. Among those, Tsallis-Buckman scaling law was verified.

MSC:

82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
82-10 Mathematical modeling or simulation for problems pertaining to statistical mechanics

Software:

LBFGS-B
Full Text: DOI

References:

[1] Wang, M. C.; Uhlenbeck, G. E., On the theory of the Brownian Motion II, Rev. Modern Phys., 17, 2-3, 323 (1945) · Zbl 0063.08172
[2] Balescu, R., Anomalous transport in turbulent plasmas and continuous time random walks, Phys. Rev. E, 51, 5, 4807 (1995)
[3] Banks, D. S.; Randin, C., Anomalous diffusion of proteins due to molecular crowding, Biophys. J., 89, 5, 2960-2971 (2005)
[4] Sugita, Y.; Okamoto, Y., Replica-exchange molecular dynamics method for protein folding, Chem. Phys. Lett., 314, 1, 141-151 (1999)
[5] Ghaemi, M.; Zabihinpour, Z.; Asgari, Y., Computer simulation study of the Lévy flight process, Physica A, 388, 8, 1509-1514 (2009)
[6] Holmes, E. E.; Lewis, M. A.; Banks, J. E.; Veit, R. R., Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75, 1, 17-29 (1994)
[7] Johnson, A. R.; Wiens, J. A.; Milne, B. T.; Crist, T. O., Animal movements and population dynamics in heterogeneous landscapes, Landsc. Ecol., 7, 1, 63-75 (1992)
[8] Kimmich, R., NMR: Tomography, Diffusometry, Relaxometry (2012), Springer Science & Business Media
[9] Stephenson, J., Some non-linear diffusion equations and fractal diffusion, Physica A, 222, 234-247 (1995)
[10] Kivelson, S. A.; Fradkin, E.; Emery, V. J., Electronic liquid-crystal phases of a doped Mott insulator, Nature, 393, 6685, 550-553 (1998)
[11] Hill, N. A.; Häder, D.-P., A biased random walk model for the trajectories of swimming micro-organisms, J. Theoret. Biol., 186, 4, 503-526 (1997)
[12] Biagi, S. F., Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields, Nucl. Instrum. Methods Phys. Res. Sect. A, 421, 1, 234-240 (1999)
[13] Hattne, J.; Fange, D.; Elf, J., Stochastic reaction-diffusion simulation with Meso RD, Bioinformatics, 21, 12, 2923-2924 (2005)
[14] Magdziarz, M.; Weron, A.; Weron, K., Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation, Phys. Rev. E, 75, 1, Article 016708 pp. (2007)
[15] Pereira, A. P.P.; Fernandes, J. P.; Atman, A. P.F.; Acebal, J. L., Simulation and calibration between parameters of continuous time random walks and subdifusive model, TEMA, 18, 305-315 (2017)
[16] Sokolov, I. M.; Klafter, J., From diffusion to anomalous diffusion: a century after Einstein’s Brownian Motion, Chaos, 15, 2, Article 026103 pp. (2005) · Zbl 1080.82022
[17] Shlesinger, M. F.; Zaslavsky, G. M.; Frisch, U., Lévy flights and related topics in Physics, Lecture Notes in Phys., 450, 52 (1995) · Zbl 0823.00016
[18] Zaburdaev, V.; Denisov, S.; Klafter, J., Lévy walks, Rev. Modern Phys., 87, 2, 483 (2015)
[19] Lewis, M. A.; Maini, P. K.; Petrovskii, S. V., Dispersal, individual movement and spatial ecology, (Lecture Notes in Mathematics (Mathematics Bioscience Series), vol. 2071 (2013), Springer) · Zbl 1264.92051
[20] Metzler, R.; Klafter, J., The Random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[21] Einstein, A., Investigations on the Theory of the Brownian Movement (1956), Courier Corporation · Zbl 0071.41205
[22] Kramers, H. A., Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 4, 284-304 (1940) · Zbl 0061.46405
[23] Bartumeus, F.; Luz, M. G.E.; Viswanathan, G. M.; Catalan, J., Animal search strategies: A quantitative random-walk analysis, Ecology, 86, 11, 3078-3087 (2005)
[24] Benhamou, S., How many animals really do the Lévy walk?, Ecology, 88, 8, 1962-1969 (2007)
[25] Reynolds, A., Liberating Lévy walk research from the shackles of optimal foragin, Phys. Live Rev., 14, 59-83 (2015)
[26] Tsallis, C.; Bukman, D. J., Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis, Phys. Rev. E, 54, R2197 (1996)
[27] Bologna, M.; Tsallis, C.; Grigolini, P., Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: exact time-dependent solutions, Phys. Rev. E, 62, 2213 (2000)
[28] Lenzi, E. K.; Mendes, R. S.; Tsallis, C., Crossover in diffusion equation: Anomalous and normal behaviors, Phys. Rev. E, 67 (2003)
[29] Tsallis, C., Introduction to Nonextensive Statistical Mechanics, 389 (2009), Springer · Zbl 1172.82004
[30] Klafter, J.; Shlesinger, M. F.; Zumofen, G., Beyond Brownian Motion, Phys. Today, 49, 2, 33-39 (1996)
[31] Koroliuk, V. S., BV Gnedenko: Classic of Limit Theorems in the Theory of Probability, Methodol. Comput. Appl. Probab., 17, 1, 5 (2015) · Zbl 1311.01022
[32] Gnedenko, B. V.; Kolmogorov, A. N., Limit distributions for sums of independent random variables, Bull. Amer. Math. Soc., 62, 50-52 (1956)
[33] Shlesinger, M. F.; Klafter, J.; Wong, Y. M., Random walks with infinite spatial and temporal moments, J. Statist. Phys., 27, 3 (1982) · Zbl 0521.60080
[34] Bouchaud, J. F.; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and pysical applications, Phys. Rep., 195, 127-293 (1990)
[35] Umarov, S.; Constantino, T.; Steinberg, S., On a q-Central Limit Theorem consistent with nonextensive statistical mechanics, Milan J. Math., 76, 307-328 (2008) · Zbl 1182.60011
[36] Metzler, R.; Nonnenmacher, T. F., Space - and time-fracitonal diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys., 284, 67-90 (2002)
[37] Tsallis, C.; Lenzi, E. K., Anomalous diffusion: nonlinear fractional Fokker-Planck equation, Chem. Phys., 284, 1, 341-347 (2002)
[38] Luchko, Y., Anomalous diffusion: models, their analysis, and interpretation, (Advances in Applied Analysis (2012), Springer), 115-145 · Zbl 1279.60105
[39] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equations, Appl. Math. Lett., 9, 6, 23-28 (1996) · Zbl 0879.35036
[40] Montroll, E. W.; Weiss, G. H., Random walks on lattices, J. Math. Phys., II, 6-167 (1965) · Zbl 1342.60067
[41] Kenkre, V. M.; Montroll, E. W.; Shlesinger, M. F., Generalized master equations for continuous-times random walks, J. Stat. Phys., 9, 45-50 (1973)
[42] Shlesinger, M. F.; Klafter, J., On the relationship among three theories of relaxation in disordered systems, Proc. Natl. Acad. Sci., 83, 848-851 (1986)
[43] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[44] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach Science Publishers · Zbl 0818.26003
[45] (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific) · Zbl 0998.26002
[46] Saenko, V. V., The influence of the finite velocity on spatial distribution of particles in the frame of Lévy walk model, Physica A, 444, 765-787 (2016) · Zbl 1400.82235
[47] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479-487 (1988) · Zbl 1082.82501
[48] Plastino, A. R.; Plastino, A., Non-extensive statistical mechanics and generalized Fokker-Planck equation, Physica A, 222, 1-4, 347-354 (1995)
[49] Combe, G.; Richefeu, V.; Stasiak, M.; Atman, A. P.F., Experimental validation of a nonextensive scaling law in confined granular media, Phys. Rev. Lett., 115, Article 238301 pp. (2015)
[50] Burioni, R.; di Santo, S.; Lepri, S.; Vezzani, A., Scattering lengths and universality in superdiffusive lévy materials, Phys. Rev. E, 86, 3, Article 031125 pp. (2012)
[51] Byrd, R. H.; Lu, P.; Nocedal, J., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190-1208 (1995) · Zbl 0836.65080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.