×

A restriction estimate with a log-concavity assumption. (English) Zbl 1540.42022

Summary: The purpose of this paper is to prove an optimal restriction estimate for a class of flat curves in \(\mathbb{R}^d\), \(d \geq 3\). Namely, we consider the problem of determining all the pairs \((p, q)\) for which the \(L^p\)-\(L^q\) estimate holds (or a suitable Lorentz norm substitute at the endpoint, where the \(L^p\)-\(L^q\) estimate fails) for the extension operator associated to \(\gamma(t) = (t, \frac{t^2}{2!}, \dots, \frac{t^{d-1}}{(d-1)!}, \phi (t))\), \(0 \leq t \leq 1\), with respect to the affine arclength measure. In particular, we are interested in the flat case, i.e. when \(\phi(t)\) satisfies \(\phi^{(d)}(0) = 0\) for all integers \(d \geq 1\). A prototypical example is given by \(\phi(t) = e^{-1/t}\). The paper [J.-G. Bak et al., J. Aust. Math. Soc. 85, No. 1, 1–28 (2008; Zbl 1154.42004)] addressed precisely this problem. The examples in Bak et al. [loc. cit.] are defined recursively in terms of an integral, and they represent progressively flatter curves. Although these include arbitrarily flat curves, it is not clear if they cover, for instance, the prototypical case \(\phi(t) = e^{-1/t}\). We will show that the desired estimate does hold for that example and indeed for a class of examples satisfying some hypotheses involving a log-concavity condition.

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B99 Harmonic analysis in several variables

Citations:

Zbl 1154.42004
Full Text: DOI

References:

[1] Arkhipov, G.I., Chubarikov, V.N., Karatsuba, A.A.: Trigonometric Sums in Number Theory and Analysis. Translated from the 1987 Russian original. de Gruyter Exp. Math. 39. Walter de Gruyter, Berlin (2004)
[2] Bak, J-G; Ham, S., Restriction of the Fourier transform to some complex curves, J. Math. Anal. Appl., 409, 1107-1127, 2014 · Zbl 1308.42005 · doi:10.1016/j.jmaa.2013.07.073
[3] Bak, J-G; Oberlin, D.; Seeger, A., Restriction of Fourier transforms to curves, II: some classes with vanishing torsion, J. Aust. Math. Soc., 85, 1-28, 2008 · Zbl 1154.42004 · doi:10.1017/S1446788708000578
[4] Bak, J-G; Oberlin, D.; Seeger, A., Restriction of Fourier transforms to curves and related oscillatory integrals, Am. J. Math., 131, 2, 277-311, 2009 · Zbl 1166.42006 · doi:10.1353/ajm.0.0044
[5] Bak, J-G; Oberlin, D.; Seeger, A., Restriction of Fourier transforms to curves: an endpoint estimate with affine arclength measure, J. Reine Angew. Math., 682, 167-205, 2013 · Zbl 1290.42024 · doi:10.1515/crelle-2012-0042
[6] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction. Grundlehren Math. Wiss. 223, 1976, Berlin: Springer, Berlin · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[7] Bourgain, J.: Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Sér. I Math. 301(10), 499-502 (1985)
[8] Christ, M., On the restriction of the Fourier transform to curves: endpoint results and the degenerate case, Trans. Am. Math. Soc., 287, 223-238, 1985 · Zbl 0563.42010 · doi:10.1090/S0002-9947-1985-0766216-6
[9] Dendrinos, S.; Stovall, B., Uniform bounds for convolution and restricted X-ray transforms along degenerate curves, J. Funct. Anal., 268, 585-633, 2015 · Zbl 1307.53003 · doi:10.1016/j.jfa.2014.10.012
[10] Dendrinos, S.; Wright, J., Fourier restriction to polynomial curve I: a geometric inequality, Am. J. Math., 132, 4, 1032-1076, 2010 · Zbl 1203.42015 · doi:10.1353/ajm.0.0127
[11] Drury, SW, Restriction of Fourier transforms to curves, Ann. Inst. Fourier (Grenoble), 35, 117-123, 1985 · Zbl 0548.42008 · doi:10.5802/aif.1001
[12] Drury, SW; Marshall, B., Fourier restriction theorems for curves with affine and Euclidean arclength, Math. Proc. Camb. Philos. Soc., 97, 111-125, 1985 · Zbl 0567.42009 · doi:10.1017/S0305004100062654
[13] Hörmander, L., Oscillatory integrals and multipliers on \(FL^p\), Ark. Mat., 11, 1-11, 1973 · Zbl 0254.42010 · doi:10.1007/BF02388505
[14] Kalton, NJ, Linear operators on \(L^p\) for \(0<p<1\), Trans. Am. Math. Soc., 259, 319-355, 1980 · Zbl 0439.46021
[15] Stein, EM; Taibleson, M.; Weiss, G., Weak type estimates for maximal operators on certain \(H^p\) classes, Rend. Circ. Mat. Palermo, 2, Suppl. 1, 81-97, 1981 · Zbl 0503.42018
[16] Stovall, B., Endpoint \(L^p \rightarrow L^q\) bounds for integration along certain polynomial curves, J. Funct. Anal., 259, 12, 3205-3229, 2010 · Zbl 1209.44003 · doi:10.1016/j.jfa.2010.08.008
[17] Stovall, B., Uniform estimates for Fourier restriction to polynomial curves in \({\mathbb{R}}^d\), Am. J. Math., 138, 2, 449-471, 2016 · Zbl 1341.42022 · doi:10.1353/ajm.2016.0021
[18] Zygmund, A., On Fourier coefficients and transforms of functions of two variables, Studia Math., 50, 189-201, 1974 · Zbl 0278.42005 · doi:10.4064/sm-50-2-189-201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.