×

A survey on the group of points arising from elliptic curves with a Weierstrass model over a ring. (English) Zbl 1540.20053

Authors’ abstract: We survey the known group structures arising from elliptic curves defined by Weierstrass models over commutative rings with unity and satisfying a technical condition. For every considered base ring, the groups that may arise depending on the curve coefficients are recalled. When a complete classification is still out of reach, partial results about the group structure and relevant subgroups are provided. Several examples of elliptic curves over the inspected rings are presented, and open questions regarding the structure of their points are highlighted.

MSC:

20E34 General structure theorems for groups
11G07 Elliptic curves over local fields
14H52 Elliptic curves
Full Text: DOI

References:

[1] [1] V. A. Abrashkin, Galois modules of group schemes of period p over the ring of Witt vectors, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987) 691-736. · Zbl 0674.14035
[2] [2] D. J. Bernstein and T. Lange, A complete set of addition laws for incomplete Edwards curves, J. Number Theory, 131 (2011) 858-872. · Zbl 1229.11087
[3] [3] W. Bosma and H. W. Lenstra, Complete systems of two addition laws for elliptic curves, J. Number Theory, 53 (1995) 229-240. · Zbl 0841.14027
[4] [4] C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc., 14 (2001) 843-939. · Zbl 0982.11033
[5] [5] A. Chillali and L. El Fadil, Elliptic Curve over a Local Finite Ring Rn, in Number Theory and Its Applications, IntechOpen (2020).
[6] [6] M. Chou, Torsion of rational elliptic curves over the maximal abelian extension of Q, Pacific J. Math., 302 (2019) 481-509. · Zbl 1472.11176
[7] [7] A. Clemm and S. Trebat-Leder, Elliptic curves with everywhere good reduction, J. Number Theory, 161 (2016) 135-145. · Zbl 1335.11041
[8] [8] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer- Verlag, Berlin, 1993. · Zbl 0786.11071
[9] [9] J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math., 16 (2007) 303-312. · Zbl 1149.11028
[10] [10] H. B. Daniels, A. Lozano-Robledo, F. Najman and A. V. Sutherland, Torsion subgroups of rational elliptic curves over the compositum of all cubic fields, Math. Comp., 87 (2018) 425-458. · Zbl 1422.11132
[11] [11] M. Derickx, S. Kamienny, W. Stein and M. Stoll, Torsion points on elliptic curves over number fields of small degree, arXiv:1707.00364, (2021).
[12] [12] M. Derickx and F. Najman, Torsion of elliptic curves over cyclic cubic fields, Math. Comp., 88 (2019) 2443-2459. · Zbl 1470.11149
[13] [13] M. Derickx and A. V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic number fields, Proc. Amer. Math. Soc., 145 (2017) 4233-4245. · Zbl 1421.11049
[14] [14] N. D. Elkies, Z28 in E(Q), etc., Number Theory Listserver, 2006.
[15] [15] N. D. Elkies and Z. Klagsbrun, New rank records for elliptic curves having rational torsion, arXiv:2003.00077 (2020).
[16] [16] R. R. Farashahi and I. E. Shparlinski, On group structures realized by elliptic curves over a fixed finite field, Exp. Math., 21 (2012) 1-10. · Zbl 1257.11061
[17] [17] J. M. Fontaine, Il n’y a pas de variété abélienne sur Z, Invent. Math., 81 (1985) 515-538. · Zbl 0612.14043
[18] [18] Y. Fujita, Torsion subgroups of elliptic curves with non-cyclic torsion over Q in elementary abelian 2-extensions of Q, Acta Arith., 115 (2004) 29-45. · Zbl 1114.11052
[19] [19] Y. Fujita, Torsion subgroups of elliptic curves in elementary abelian 2-extensions of Q, J. Number Theory, 114 (2005) 124-134. [20] T. Kagawa, Determination of elliptic curves with everywhere good reduction over Q( 37), Acta Arith., 83 (1998) 253-269.
[20] [21] T. Kagawa, Determination of elliptic curves with everywhere good reduction over real quadratic fields, Arch. Math. (Basel), 73 (1999) 25-32. [22] T. Kagawa, Determination of elliptic curves with everywhere good reduction over real quadratic fields Q( 3p), Acta. Arith., 96 (2001) 231-245.
[21] [23] T. Kagawa, Torsion Groups of Elliptic Curves with Everywhere Good Reduction over Quadratic Fields, Int. J. Algebra, 10 (2016) 461-467.
[22] [24] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., 109 (1992) 221-229. · Zbl 0773.14016
[23] [25] N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Annals of Mathematics Studies, 108, Princeton University Press, Princeton, NJ, 1985. · Zbl 0576.14026
[24] [26] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., 109 (1988) 125-149. · Zbl 0647.14020
[25] [27] M. Kida, Computing elliptic curves having good reduction everywhere over quadratic fields, Tokyo J. Math., 24 (2001) 545-558. · Zbl 1023.14011
[26] [28] M. Kida, Reduction of elliptic curves over certain real quadratic number fields, Math. Comp., 68 (1999) 1679-1685. · Zbl 0930.11037
[27] [29] Z. Klagsbrun, T. Sherman and J. Weigandt, The Elkies curve has rank 28 subject only to GRH, Math. Comp., 88 (2019) 837-846. · Zbl 1469.11171
[28] [30] E. Kobayashi, A remark on the Mordell-Weil rank of elliptic curves over the maximal abelian extension of the rational number field, Tokyo J. Math., 29 (2006) 295-300. · Zbl 1213.11119
[29] [31] N. Koblitz, Elliptic curve cryptosystems, Math. Comp., 48 (1987) 203-209. · Zbl 0622.94015
[30] [32] M. Kosters and R. Pannekoek, On the structure of elliptic curves over finite extensions of Qp with additive reduction, (2017), arXiv:1703.07888.
[31] [33] D. Jeon, C. H. Kim and A. Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith., 113 (2004) 291-301. · Zbl 1083.11038
[32] [34] D. Jeon, C. H. Kim and E. Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2), 74 (2006), pp. 1-12. · Zbl 1165.11054
[33] [35] D. Johnson, A. Menezes and S. Vanstone, The Elliptic Curve Digital Signature Algorithm (ECDSA), Int. J. Inf. Secur., (2001) 36-63.
[34] [36] S. Lang and A. Néron, Rational points of abelian varieties over function fields, Amer. J. Math., 81 (1959) 95-118. · Zbl 0099.16103
[35] [37] H. Lange and W. Ruppert, Complete systems of addition laws on abelian varieties, Invent. Math., 79 (1985) 603-610. · Zbl 0577.14035
[36] [38] H. Lange and W. Ruppert, Addition laws on elliptic curves in arbitrary characteristics, J. Algebra, 107 (1987) 106-116. · Zbl 0622.14024
[37] [39] M. Laska and M. Lorenz, Rational points on elliptic curves over Q in elementary abelian 2-extensions of Q, J. Reine Angew. Math., 355 (1985) 163-172. · Zbl 0586.14013
[38] [40] H. W. Lenstra, Elliptic curves and number-theoretic algorithms, Proceedings of the International Congress of Math- ematicians, 1, 2 (1986) 99-120. · Zbl 0686.14039
[39] [41] H. W. Lenstra, Factoring integers with elliptic curves, Ann. of Math. (2), 126 (1987) 649-673. · Zbl 0629.10006
[40] [42] H. W. Lenstra and J. Pila, Does the set of points of an elliptic curve determine the group?, Computational algebra and number theory (Sydney, 1992), Math. Appl., 325, Kluwer Acad. Publ., Dordrecht, 1995 111-118. · Zbl 0861.14024
[41] [43] E. Lutz, Sur l’équation y 2 = x3 − Ax − B dans les corps p-adiques, J. Reine Angew. Math., 177 (1937) 237-247. · Zbl 0017.05307
[42] [44] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., no. 47 (1977) 33-186. · Zbl 0394.14008
[43] [45] B. Mazur, Rational isogenies of prime degree, Invent. Math., 44 (1978) 129-162. · Zbl 0386.14009
[44] [46] R. J. S. McDonald, Torsion subgroups of elliptic curves over function fields of genus 0, J. Number Theory, 193 (2018) 395-423. · Zbl 1429.11106
[45] [47] A. Meneghetti, M. Sala and D. Taufer, A survey on PoW-based consensus, AETiC, 4 (2020) 8-18.
[46] [48] A. Meneghetti, M. Sala and D. Taufer, A New ECDLP-Based PoW Model, Mathematicsl, 8 (2020) pp. 11.
[47] [49] B. Meyer and V. Müller, A public key cryptosystem based on elliptic curves over Z/nZ equivalent to factoring., Advances in cryptology—EUROCRYPT ’96, Lecture Notes in Comput. Sci., 1070, Springer, Berlin, 1996 49-59. · Zbl 1301.94122
[48] [50] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., 124 (1996) 437-449. · Zbl 0936.11037
[49] [51] V. S. Miller, Use of elliptic curves in cryptography, Advances in cryptology—CRYPTO ’85 (Santa Barbara, Calif., 1985), Lecture Notes in Comput. Sci., 218, Springer, Berlin, 1986 417-426. · Zbl 0589.94005
[50] [52] L. J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Camb. Phil. Soc., 21 (1922) 179-192. · JFM 48.0140.03
[51] [53] F. Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on X1 (n), Math. Res. Lett., 23 (2016) 245-272. · Zbl 1416.11084
[52] [54] J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag (1999).
[53] [55] A. Ogg, Abelian curves of 2-power conductor, Proc. Cambridge Philos. Soc., 62 (1966) 143-148. · Zbl 0163.15403
[54] [56] K. Ribet, Torsion points of abelian varieties in cyclotomic extensions, Enseign. Math., 27 (1981) 315-319.
[55] [57] H. G. Rück, A Note on Elliptic Curves Over Finite Fields, Math. Comp., 49 (1987) 301-304. · Zbl 0628.14019
[56] [58] M. Sala and D. Taufer, The group structure of elliptic curves over Z/N Z, (2020), arXiv:2010.15543.
[57] [59] R. Schoof, Abelian varieties over cyclotomic fields with good reduction everywhere, Math. Ann., 325 (2003) 413-448. · Zbl 1058.11038
[58] [60] B. Setzer, Elliptic curves over complex quadratic fields, Pacific J. Math., 74 (1978) 235-250. · Zbl 0394.14018
[59] [61] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer- Verlag, New York, 1994. · Zbl 0911.14015
[60] [62] J. H. Silverman, The arithmetic of elliptic curves Second edition, Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009. · Zbl 1194.11005
[61] [63] R. J. Stroeker,Reduction of elliptic curves over imaginary quadratic number fields, Pacific J. Math., 108 (1983) 451-463. · Zbl 0491.14024
[62] [64] A. V. Sutherland, Torsion subgroups of elliptic curves over number fields, Preprint (2012).
[63] [65] N. Takeshi, Elliptic curves with good reduction everywhere over cubic fields, Int. J. Number Theory, 11 (2015) 1149-1164. · Zbl 1322.11060
[64] [66] N. Takeshi, Family of elliptic curves with good reduction everywhere over number fields of given degree, Funct. Approx. Comment. Math., 56 (2017) 61-65. · Zbl 1410.11055
[65] [67] J. T. Tate, The arithmetic of elliptic curves, Invent. Math., 23 (1974) 179-206. · Zbl 0296.14018
[66] [68] J. F. Voloch, A note on elliptic curves over finite fields, Bull. Soc. Math. France, 116 (1988) 455-458. · Zbl 0688.14015
[67] [69] L. C. Washington, Elliptic curves, number theory and cryptography, Chapman & Hall / CRC, 2008. · Zbl 1200.11043
[68] [70] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4), 2 (1969) 521-560. · Zbl 0188.53001
[69] [71] A. Weil, L’arithmétique sur les courbes algébriques, Acta Arith., 52 (1929) 281-315. · JFM 55.0713.01
[70] [72] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math., 142 (1995) 443-551. · Zbl 0823.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.