×

Torsion subgroups of elliptic curves over quintic and sextic number fields. (English) Zbl 1421.11049

Summary: Let \(\Phi^\infty (d)\) denote the set of finite abelian groups that occur infinitely often as the torsion subgroup of an elliptic curve over a number field of degree \(d\). The sets \(\Phi^\infty (d)\) are known for \( d \leq 4\). In this article we determine \(\Phi^\infty (5)\) and \(\Phi^\infty (6)\).

MSC:

11G05 Elliptic curves over global fields
11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties
14H51 Special divisors on curves (gonality, Brill-Noether theory)

Software:

GitHub; mdmagma; Magma

References:

[1] Abramovich, Dan, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices, no. 20, 1005-1011 (1996) · Zbl 0878.14019
[2] Atkin, A. O. L.; Li, Wen Ch’ing Winnie, Twists of newforms and pseudo-eigenvalues of \(W\)-operators, Invent. Math., 48, 3, 221-243 (1978) · Zbl 0369.10016
[3] Bosma, Wieb; Cannon, John; Playoust, Catherine, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039
[4] Conrad, Brian; Edixhoven, Bas; Stein, William, \(J_1(p)\) has connected fibers, Doc. Math., 8, 331-408 (2003) · Zbl 1101.14311
[5] Deligne, P.; Rapoport, M., Modular functions of one variable, II, Lecture Notes in Math., Vol. 349, 1973, pp. 143-316, Proc. Internat. Summer School, Univ. Antwerp, Antwerp · Zbl 0264.00002
[6] Derickx, Maarten; van Hoeij, Mark, Gonality of the modular curve \(X_1(N)\), J. Algebra, 417, 52-71 (2014) · Zbl 1305.14012
[7] DvHnp Maarten Derickx and Mark van Hoeij, data related to [6], available at www.math.fsu.edu/ hoeij/files/X1N, 2013.
[8] DKM16 Maarten Derickx, Sheldon Kamienny, and Barry Mazur, Rational families of \(17\)-torsion points of elliptic curves over number fields, Contemporary Mathematics, AMS, to appear. · Zbl 1440.11092
[9] mdmagma Maarten Derickx and Andrew V. Sutherland, GitHub repository related to Torsion subgroups of elliptic curves over quintic and sextic number fields, available at https://github.com/koffie/mdmagma/, 2016. · Zbl 1421.11049
[10] models Maarten Derickx and Andrew V. Sutherland, http://math.mit.edu/ drew/X1mn.htmlExplicit models of \(X_1(m,mn)\), available at http://math.mit.edu/ drew/X1mn.html, 2016.
[11] Frey, Gerhard, Curves with infinitely many points of fixed degree, Israel J. Math., 85, 1-3, 79-83 (1994) · Zbl 0808.14022
[12] Faltings, Gerd, The general case of S. Lang’s conjecture. Barsotti Symposium in Algebraic Geometry, Abano Terme, 1991, Perspect. Math. 15, 175-182 (1994), Academic Press, San Diego, CA · Zbl 0823.14009
[13] Jain, Sonal, Points of low height on elliptic surfaces with torsion, LMS J. Comput. Math., 13, 370-387 (2010) · Zbl 1278.11071
[14] Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin, Families of elliptic curves over cubic number fields with prescribed torsion subgroups, Math. Comp., 80, 273, 579-591 (2011) · Zbl 1214.11071
[15] Jeon, Daeyeol; Kim, Chang Heon; Park, Euisung, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2), 74, 1, 1-12 (2006) · Zbl 1165.11054
[16] Jeon, Daeyeol; Kim, Chang Heon; Schweizer, Andreas, On the torsion of elliptic curves over cubic number fields, Acta Arith., 113, 3, 291-301 (2004) · Zbl 1083.11038
[17] Kamienny, S., Torsion points on elliptic curves and \(q\)-coefficients of modular forms, Invent. Math., 109, 2, 221-229 (1992) · Zbl 0773.14016
[18] Kato, Kazuya, \(p\)-adic Hodge theory and values of zeta functions of modular forms, Cohomologies \(p\)-adiques et applications arithm\'etiques. III, Ast\'erisque, No. 295, ix, 117-290 (2004) · Zbl 1142.11336
[19] Kenku, M. A.; Momose, F., Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., 109, 125-149 (1988) · Zbl 0647.14020
[20] Kim, Henry H., Functoriality for the exterior square of \({\rm GL}_4\) and the symmetric fourth of \({\rm GL}_2\), with appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak, J. Amer. Math. Soc., 16, 1, 139-183 (2003) · Zbl 1018.11024
[21] Kolyvagin, V. A.; Logach\"ev, D. Yu., Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz. Leningrad Math. J., 1 1, 5, 1229-1253 (1990) · Zbl 0728.14026
[22] Kubert, Daniel Sion, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3), 33, 2, 193-237 (1976) · Zbl 0331.14010
[23] Kumar, Abhinav; Shioda, Tetsuji, Multiplicative excellent families of elliptic surfaces of type \(E_7\) or \(E_8\), Algebra Number Theory, 7, 7, 1613-1641 (2013) · Zbl 1281.14030
[24] Mazur, B., Modular curves and the Eisenstein ideal, Inst. Hautes \'Etudes Sci. Publ. Math., 47, 33-186 (1978) (1977) · Zbl 0394.14008
[25] Merel, Lo\"\i c., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., 124, 1-3, 437-449 (1996) · Zbl 0936.11037
[26] Reichert, Markus A., Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp., 46, 174, 637-658 (1986) · Zbl 0605.14028
[27] Silverman, Joseph H., The arithmetic of elliptic curves, Graduate Texts in Mathematics 106, xx+513 pp. (2009), Springer, Dordrecht · Zbl 1194.11005
[28] Sutherland, Andrew V., Constructing elliptic curves over finite fields with prescribed torsion, Math. Comp., 81, 278, 1131-1147 (2012) · Zbl 1267.11074
[29] Weil, Andr\'e, L’arithm\'etique sur les courbes alg\'ebriques, Acta Math., 52, 1, 281-315 (1929) · JFM 55.0713.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.