×

Explicit transformations for generalized Lambert series associated with the divisor function \(\sigma_a^{(N)}(n)\) and their applications. (English) Zbl 1540.11111

The main goal of this paper is to generalize (1.13) and (1.14) obtained in [A. Dixit et al., Res. Math. Sci. 9, No. 2, Paper No. 34, 54 p. (2022; Zbl 1492.33006)] in the setting of \(\sigma_a^{(N)}(n)e^{-ny}\), where \(\sigma_a^{(N)}(n)\) is the generalized sum-of-divisors function with \(N\)th powers of divisors. This has been studied by the authors in many places starting from [A. Dixit et al., Nagoya Math. J. 239, 232–293 (2020; Zbl 1462.11064)] based on the functional equation.
In this paper, the authors use the Voronoi summation formula [A. Dixit et al., “Voronoi summation formula for the generalized divisor function \(\sigma_{z}^{(k)}(n)\)”, Preprint, arXiv:2303.09937] to prove transformation formulas for Lambert series. It seems that the same results could be obtained by the use of the functional equation and the Hecke gamma transform and that the main interest lies in finding new special functions which express the results in a closed form.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
11P82 Analytic theory of partitions

Software:

DLMF

References:

[1] Andrews, G.E., The Theory of Partitions, Addison-Wesley Pub. Co., NY, 300 pp.: Reissued, p. 1998. Cambridge University Press, New York (1976) · Zbl 0371.10001
[2] Apelblat, A., Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach, Mathematics, 8, 657 (2020) · doi:10.3390/math8050657
[3] Apostol, T., Introduction to Analytic Number Theory (1976), New York: Springer Science+Business Media, New York · Zbl 0335.10001 · doi:10.1007/978-1-4757-5579-4
[4] Banerjee, S., Dixit, A., Gupta, S.: Lambert Series of Logarithm, the Derivative of Deninger’s Function \(R(z)\) and a Mean Value Theorem for \(\zeta \left(\frac{1}{2}-it\right)\zeta^{\prime }\left(\frac{1}{2}+it\right)\). submitted for publication
[5] Berndt, BC, Ramanujan’s Notebooks, Part II (1989), New York: Springer-Verlag, New York · Zbl 0716.11001 · doi:10.1007/978-1-4612-4530-8
[6] Berndt, BC, Ramanujan’s Notebooks. Part V (1998), New York: Springer-Verlag, New York · Zbl 0886.11001 · doi:10.1007/978-1-4612-1624-7
[7] Andrews, George E.; Berndt, Bruce C., Ramanujan’s Lost Notebook Part II, 418 (2009), New York: Springer, New York · Zbl 1180.11001
[8] Berndt, BC; Dixit, A.; Roy, A.; Zaharescu, A., New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan, Adv. Math., 304, 809-929 (2017) · Zbl 1396.11103 · doi:10.1016/j.aim.2016.08.011
[9] Berndt, BC; Straub, A.; Montgomery, H.; Nikeghbali, A.; Rassias, M., Ramanujan’s formula for \(\zeta (2n+1)\), Exploring the Riemann Zeta Function, 13-34 (2017), Berlin: Springer, Berlin · Zbl 1497.11198 · doi:10.1007/978-3-319-59969-4_2
[10] Bridges, W., Brindle, B., Bringmann, K., Franke, J.: Asymptotic expansions for partitions generated by infinite products, submitted for publication, arXiv:2303:11864v1, March 21, (2023)
[11] Chaundy, TW, The unrestricted plane partition, Q. J. Math. Ser., 3, 76-80 (1932) · JFM 58.1039.03 · doi:10.1093/qmath/os-3.1.76
[12] Cohen, E., An extension of Ramanujan’s sum, Duke Math. J., 16, 85-90 (1949) · Zbl 0034.02105 · doi:10.1215/S0012-7094-49-01607-5
[13] Crum, MM, On some Dirichlet series, J. Lond. Math. Soc., 15, 10-15 (1940) · JFM 66.1215.03 · doi:10.1112/jlms/s1-15.1.10
[14] Davenport, H., Multiplicative Number Theory (2000), New York: Springer-Verlag, New York · Zbl 1002.11001
[15] Dixit, A., Gupta, R., Kumar, R.: Extended Higher Herglotz Functions I. Functional Equations. Adv. Appl. Math. To appear · Zbl 07796442
[16] Dixit, A.; Gupta, R.; Kumar, R.; Maji, B., Generalized Lambert series, Raabe’s cosine transform and a two-parameter generalization of Ramanujan’s formula for \(\zeta (2m + 1)\), Nagoya Math. J., 239, 232-293 (2020) · Zbl 1462.11064 · doi:10.1017/nmj.2018.38
[17] Dixit, A.; Kesarwani, A.; Kumar, R., Explicit transformations of certain Lambert series, Res. Math. Sci., 9, 34 (2022) · Zbl 1492.33006 · doi:10.1007/s40687-022-00331-5
[18] Dixit, A., Kumar, R.: Applications of the Lipschitz summation formula and a generalization of Raabe’s cosine transform, submitted for publication
[19] Dixit, A.; Maji, B., Generalized Lambert series and arithmetic nature of odd zeta values, Proc. R. Soc. Edinb. Sect. A Math., 150, 2, 741-769 (2020) · Zbl 1437.11124 · doi:10.1017/prm.2018.146
[20] Dixit, A., Maji, B., Vatwani, A.: Voronoï summation formula for the generalized divisor function \(\sigma_z^{(k)}(n)\), submitted for publication
[21] Dixon, AL; Ferrar, WL, Lattice-point summation formulae, Q. J. Math., 2, 31-54 (1931) · Zbl 0001.13001 · doi:10.1093/qmath/os-2.1.31
[22] Dorigoni, D.; Kleinschmidt, A., Resurgent expansion of Lambert series and iterated Eisenstein integrals, Commun. Number Theory Phys., 15, 1, 1-57 (2021) · Zbl 1462.11040 · doi:10.4310/CNTP.2021.v15.n1.a1
[23] Gorenflo, R.; Kilbas, AA; Mainardi, F.; Rogosin, SV, Mittag-Leffler Functions, Related Topics and Applications, 443 (2014), Berlin: Springer-Verlag, Berlin · Zbl 1309.33001 · doi:10.1007/978-3-662-43930-2
[24] Guinand, AP, Some rapidly convergent series for the Riemann \(\Xi \)-function, Q. J. Math. (Oxford), 6, 156-160 (1955) · Zbl 0065.27703 · doi:10.1093/qmath/6.1.156
[25] Gupta, A.; Maji, B., On Ramanujan’s formula for \(\zeta (1/2)\) and \(\zeta (2m+1)\), J. Math. Anal. Appl., 507 (2022) · Zbl 1474.11145 · doi:10.1016/j.jmaa.2021.125738
[26] Hardy, G.H., Ramanujan, S.: Asymptotic formulæ in combinatory analysis. Proc. London Math. Soc. 17, 75-115. Reprinted in Collected Papers of Srinivasa Ramanujan, Chelsea Publishing Company, New York 1962, 276-309 (1918) · JFM 46.0198.04
[27] Kanemitsu, S.; Tanigawa, Y.; Yoshimoto, M., On the values of the Riemann zeta-function at rational arguments, Hardy-Ramanujan J., 24, 11-19 (2001) · Zbl 0992.11052
[28] Kanemitsu, S.; Tanigawa, Y.; Yoshimoto, M., On multiple Hurwitz zeta-function values at rational arguments, Acta Arith., 107, 1, 45-67 (2003) · Zbl 1054.11043 · doi:10.4064/aa107-1-5
[29] Koshliakov, NS, Sur une intégrale définie et son application \(\grave{a}\) la théorie des formules sommatoires, J. Soc. Phys. Math. Leningr., 2, 2, 123-130 (1929) · JFM 57.1364.02
[30] Koshliakov, N.S.: Note on certain integrals involving Bessel functions. Bull. Acad. Sci. URSS Ser. Math. 2(4), 417-420 (1938); English text 421-425 · JFM 64.1087.03
[31] Krätzel, E., Dedekindsche Funktionen und Summen II. (German), Period. Math. Hung., 12, 3, 163-179 (1981) · Zbl 0455.10005 · doi:10.1007/BF01849784
[32] Luke, YL, The Special Functions and Their Approximations (1969), Cambridge: Academic Press, INC, Cambridge · Zbl 0193.01701
[33] McCarthy, PJ, Arithmetische Funktionen (2017), Berlin: Springer Spektrum, Berlin · Zbl 1375.11005 · doi:10.1007/978-3-662-53732-9
[34] Van Mieghem, P.: The Mittag-Leffler function, arXiv:2005.13330v4, September 26, (71 pages) (2021)
[35] Olver, FWJ; Lozier, DW; Boisvert, RF; Clark, CW, NIST Handbook of Mathematical Functions (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.00002
[36] Prudnikov, AP; Brychkov, YuA; Marichev, OI, Integrals and Series (1990), New York: Gordon and Breach, New York · Zbl 0967.00503
[37] Ramanujan, S., On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Philos. Soc., 22, 179-199 (1918)
[38] Ramanujan, S., The Lost Notebook and Other Unpublished Papers (1988), New Delhi: Narosa, New Delhi · Zbl 0639.01023
[39] Ramanujan, S.: Notebooks, vol. 2. Tata Institute of Fundamental Research, Bombay (1957); 2nd edn (2012) · Zbl 0138.24201
[40] Temme, NM, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996), New York: Wiley-Interscience Publication, New York · Zbl 0856.33001 · doi:10.1002/9781118032572
[41] Tenenbaum, G.; Wu, J.; Li, Y-L, Power partitions and saddle-point method, J. Number Theory, 204, 435-445 (2019) · Zbl 1416.05034 · doi:10.1016/j.jnt.2019.04.013
[42] Vlasenko, M.; Zagier, D., Higher Kronecker “limit” formulas for real quadratic fields, J. reine angew. Math., 679, 23-64 (2013) · Zbl 1276.11183 · doi:10.1515/crelle.2012.022
[43] Chavan, P.; Chavan, S.; Vignat, C.; Wakhare, T., Dirichlet series under standard convolutions: variations on Ramanujan’s identity for odd zeta values, Ramanujan J., 59, 4, 1245-1285 (2022) · Zbl 1498.11173 · doi:10.1007/s11139-022-00624-x
[44] Wigert, S., Sur une extension de la série de Lambert, Arkiv Mat. Astron. Fys., 19, 13 (1925) · JFM 51.0268.02
[45] Wigert, S., Sur une nouvelle fonction enti \(\grave{e}\) re et son application \(\grave{a}\) la théorie des nombres, Math. Ann., 96, 1, 420-429 (1927) · JFM 52.0340.01 · doi:10.1007/BF01209178
[46] Wigert, S., Note sur la série \(\displaystyle{\sum_{n=1}^{\infty }e^{-n^kx}} \), Tohoku Math. J., 38, 451-457 (1933) · JFM 59.0369.02
[47] Wiman, A., Uber den fundamental satz in der theorie der funcktionen \(E_a(x)\), Acta Math., 29, 191-201 (1905) · JFM 36.0471.01 · doi:10.1007/BF02403202
[48] Wright, EM, Asymptotic partition formulae I. Plane partitions, Q. J. Math., 1, 177-189 (1931) · Zbl 0002.38202 · doi:10.1093/qmath/os-2.1.177
[49] Zagier, D., A Kronecker limit formula for real quadratic fields, Math. Ann., 213, 153-184 (1975) · Zbl 0283.12004 · doi:10.1007/BF01343950
[50] Zagier, D., Power partitions and a generalized eta transformation property, Hardy-Ramanujan J., 44, 1-18 (2021) · Zbl 1503.11134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.