×

Simplicial Chern-Weil theory for coherent analytic sheaves. I. (La théorie de Chern-Weil simpliciale pour les faisceaux analytiques cohérents. I.) (English. French summary) Zbl 1539.14005

Summary: In [Chern classes for coherent sheaves. Coventry: Univ. Warwick (PhD Thesis) (1980), http://webcat.warwick.ac.uk/record=b1751746~S1], H. I. Green constructed Chern classes in de Rham cohomology of coherent analytic sheaves. We construct here a formal \((\infty,1)\)-categorical framework into which we can place Green’s work and generalise it, also obtaining a better idea as to what exactly a simplicial connection should be. The result will be the ability to work with generalised invariant polynomials (which will be introduced in the sequel to this paper) evaluated at the curvature of so-called admissible simplicial connections to get explicit Čech representatives in de Rham cohomology of characteristic classes of coherent analytic sheaves.

MSC:

14A30 Fundamental constructions in algebraic geometry involving higher and derived categories (homotopical algebraic geometry, derived algebraic geometry, etc.)
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
18N60 \((\infty,1)\)-categories (quasi-categories, Segal spaces, etc.); \(\infty\)-topoi, stable \(\infty\)-categories
32C35 Analytic sheaves and cohomology groups
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)

References:

[1] M. F. Atiyah & F. Hirzebruch -“Analytic cycles on complex man-ifolds”, Topology 1 (1962), p. 25-45, doi: 10.1016/0040-9383(62) 90094-0. · Zbl 0108.36401 · doi:10.1016/0040-9383(62)90094-0
[2] C. Barwick & D. M. Kan -“Relative categories: Another model for the homotopy theory of homotopy theories”, Indagationes Mathematicae 23 (2012), no. 1, p. 42-68, doi: 10.1016/j.indag.2011.10.002. · Zbl 1245.18006 · doi:10.1016/j.indag.2011.10.002
[3] ”Partial model categories and their simplicial nerves”, 2013, arXiv:1102.2512v2 [math.AT].
[4] P. Baum & R. Bott -“Singularities of holomorphic foliations”, Journal of Differential Geometry 7 (1972), no. 3-4, p. 279-342, doi: 10.4310/jdg/ 1214431158. · Zbl 0268.57011 · doi:10.4310/jdg/1214431158
[5] J. E. Bergner -“Homotopy limits of model categories and more general homotopy theories”, 2012, arXiv:1010.0717v2 [math.AT].
[6] J. Block, J. Holstein & Z. Wei -“Explicit homotopy limits of dg-categories and twisted complexes”, Homology, Homotopy and Applications 19 (2017), p. 343-371. · Zbl 1408.14065
[7] A. I. Bondal & M. M. Kapranov -“Enhanced triangulated cat-egories”, Math. USSR Sbornik 70 (1991), no. 1, p. 1-15, doi: 10. 1070/SM1991v070n01ABEH001253, https://ncatlab.org/nlab/files/ bondalKaprEnhTRiangCat.pdf. tome 151 -2023 -n o 1 · Zbl 0729.18008 · doi:10.1070/SM1991v070n01ABEH001253
[8] R. Bott & L. W. Tu -Differential forms in algebraic topology, vol. 82, Springer, 1982, doi: 10.1007/978-1-4757-3951-0. · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[9] J. L. Dupont -“Simplicial de Rham cohomology and characteristic classes of flat bundles”, Topology 15 (1976), p. 233-245, doi: 10.1016/ 0040-9383(76)90038-0. · Zbl 0331.55012 · doi:10.1016/0040-9383(76)90038-0
[10] B. Fresse -Homotopy of operads and Grothendieck-Teichmüller groups, Part 2: The Applications of (Rational) Homotopy Theory Methods, Amer-ican Mathematical Society, 2017, doi: 10.1090/surv/217.2. · Zbl 1375.55007 · doi:10.1090/surv/217.2
[11] H. I. Green -“Chern classes for coherent sheaves”, Ph.D. thesis, Univer-sity of Warwick, 1980, https://pugwash.lib.warwick.ac.uk/record= b1751746 S1.
[12] J. Grivaux -“Some problems in complex and almost-complex geometry”, 2009, https://tel.archives-ouvertes.fr/tel-00460334.
[13] P. S. Hirschhorn -Model categories and their localizations, American Mathematical Society, 2003, doi: 10.1090/surv/099. · Zbl 1017.55001 · doi:10.1090/surv/099
[14] A. Hirschowitz & C. Simpson -“Descente pour les n-champs”, 2001, arXiv:math/9807049v3 [math.AG].
[15] T. Hosgood -“Chern classes of coherent analytic sheaves: A simplicial approach”, 2020, https://tel.archives-ouvertes.fr/tel-02882140.
[16] ”Simplicial Chern-Weil theory for coherent analytic sheaves, part II”, 2020, arXiv:2003.10591v2 [math.AG].
[17] ”Various notions of (co)simplicial (pre)sheaves”, Communications in Mathematics 32 (2024), doi: 10.46298/cm.10359. · Zbl 07900694 · doi:10.46298/cm.10359
[18] M. Hovey -“Model category structures on chain complexes of sheaves”, Transactions of the American Mathematical Society 353 (2001), no. 6, p. 2441-2457, doi: 10.1090/S0002-9947-01-02721-0. · Zbl 0969.18010 · doi:10.1090/S0002-9947-01-02721-0
[19] M. Kashiwara & P. Schapira -Sheaves on manifolds, Grundlehren Der Mathematischen Wissenschaften, no. 292, Springer-Verlag Berlin Hei-delberg, 1990, doi: 10.1007/978-3-662-02661-8. · Zbl 0709.18001 · doi:10.1007/978-3-662-02661-8
[20] N. R. O’Brian, D. Toledo & Y. L. L. Tong -“The trace map and characteristic classes for coherent sheaves”, American Journal of Mathe-matics 103 (1981), no. 2, p. 225-252, doi: 10.2307/2374215. · Zbl 0473.14008 · doi:10.2307/2374215
[21] ”A Grothendieck-Riemann-Roch formula for maps of complex manifolds”, Mathematische Annalen 271 (1985), no. 4, p. 493-526, doi: 10.1007/BF01456132. · Zbl 0539.14005 · doi:10.1007/BF01456132
[22] C. Rezk -“A model for the homotopy theory of homotopy theory”, Trans-actions of the American Mathematical Society 353 (2000), no. 3, p. 973-1007, doi: 10.1090/S0002-9947-00-02653-2. · Zbl 0961.18008 · doi:10.1090/S0002-9947-00-02653-2
[23] E. Riehl -“Homotopical categories: From model categories to (∞, 1)-categories”, 2020, arXiv:1904.00886v3 [math.AT].
[24] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
[25] D. Toledo & Y. L. L. Tong -“A parametrix for ∂ and Riemann-Roch in Čech theory”, Topology 15 (1976), no. 4, p. 273-301, doi: 10.1016/ 0040-9383(76)90022-7. · Zbl 0355.58014 · doi:10.1016/0040-9383(76)90022-7
[26] ”Duality and intersection theory in complex manifolds. I”, Math-ematische Annalen 237 (1978), p. 41-77, doi: 10.1007/BF01351557. · Zbl 0391.32008 · doi:10.1007/BF01351557
[27] Green’s theory of Chern classes and the Riemann-Roch formula, Contemporary Mathematics, vol. 58.1, American Mathematical Society, 1986, doi: 10.1090/conm/058.1/860421. · doi:10.1090/conm/058.1/860421
[28] B. Toën & G. Vezzosi -“Homotopical Algebraic Geometry II: Geo-metric stacks and applications”, Memoirs of the American Mathematical Society 193 (2008), no. 902, p. x+224, doi: 10.1090/memo/0902. · Zbl 1145.14003 · doi:10.1090/memo/0902
[29] C. Voisin -“A counterexample to the Hodge conjecture extended to Kähler varieties”, International Mathematics Research Notices 20 (2002), p. 1057-1075, doi: 10.1155/S1073792802111135. · Zbl 1048.14004 · doi:10.1155/S1073792802111135
[30] Z. Wei -“Twisted complexes on a ringed space as a dg-enhancement of the derived category of perfect complexes”, European Journal of Mathematics 2 (2016), no. 3, p. 716-759, doi: 10.1007/s40879-016-0102-8. · Zbl 1359.14018 · doi:10.1007/s40879-016-0102-8
[31] S. Yu -“The Dolbeault DGA of a formal neighborhood”, Ph.D. thesis, The Pennsylvania State University, 2013, https://www.math.upenn.edu/  shilinyu/papers/thesis.pdf. tome 151 -2023 -n o 1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.