×

Simplicial Chern-Weil theory for coherent analytic sheaves. II. (English) Zbl 1537.32022

Summary: In the previous part of this diptych, we defined the notion of an admissible simplicial connection, as well as explaining how H.I. Green constructed a resolution of coherent analytic sheaves by locally free sheaves on the Čech nerve. This paper seeks to apply these abstract formalisms, by showing that Green’s barycentric simplicial connection is indeed admissible, and that this condition is exactly what we need in order to be able to apply Chern-Weil theory and construct characteristic classes. We show that, in the case of (global) vector bundles, the simplicial construction agrees with what one might construct manually: the explicit Čech representatives of the exponential Atiyah classes of a vector bundle agree. Finally, we summarise how all the preceding theory fits together to allow us to define Chern classes of coherent analytic sheaves, as well as showing uniqueness in the compact case.
For Part I see [Bull. Soc. Math. Fr. 151, No. 1, 127–170 (2023; Zbl 1539.14005)].

MSC:

32C35 Analytic sheaves and cohomology groups
18N50 Simplicial sets, simplicial objects

Citations:

Zbl 1539.14005

References:

[1] Bleecker, D.: Gauge theory and variational principles, vol. 1. Global Analysis Pure and Applied : Series A. Addison-Wesley Publishing Co. ISBN 0-201-10096-7 (1981) · Zbl 0481.58002
[2] Dupont, JL, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology, 15, 233-245 (1976) · Zbl 0331.55012 · doi:10.1016/0040-9383(76)90038-0
[3] Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., (1994). ISBN: 978-0-471-05059-9 · Zbl 0836.14001
[4] Green, H.I.: Chern classes for coherent sheaves. PhD Thesis. University of Warwick, (1980). URL: https://pugwash.lib.warwick.ac.uk/record=b1751746 S1
[5] Grivaux, J.: Some problems in complex and almost-complex geometry. Université Pierre-et-Marie-Curie (Paris 6), (2009). HAL: tel-00460334
[6] Grivaux, J., On a conjecture of Kashiwara relating Chern and Euler Classes of O-modules, J. Differ. Geom., 90, 267-275 (2012) · Zbl 1247.32013 · doi:10.4310/jdg/1335230847
[7] Hosgood, T.: Chern Classes of coherent analytic sheaves: a simplicial approach. Université d’Aix-Marseille, (2020). HAL: tel-02882140
[8] Hosgood, T., Simplicial Chern-Weil theory for coherent analytic sheaves, part I, Bull de la Soc Math de Fr, 151, 127-170 (2023) · Zbl 1539.14005 · doi:10.24033/bsmf.2866
[9] Huybrechts, D.: Complex geometry: an introduction. Universitext, Springer-Verlag, (2005). ISBN: 978-3-540-21290-4. doi:10.1007/b137952 · Zbl 1055.14001
[10] O’Brian, NR; Domingo, T.; Tong, YLL, A Grothendieck-Riemann-Roch formula for maps of complex manifolds, Math. Ann., 271, 4, 493-526 (1985) · Zbl 0539.14005 · doi:10.1007/BF01456132
[11] Toledo, D., Tong, Y.L.L.: Green’s theory of Chern classes and the Riemann-Roch formula. In: The Lefschetz Centennial Conference. Part I: Proceedings on Algebraic Geometry, vol. 58. I. Contemporary Mathematics. American Mathematical Society, (1986), pp. 261-275. doi:10.1090/conm/058.1/860421 · Zbl 0612.32009
[12] Voisin, C.: Hodge theory and complex algebraic geometry I. Trans. by Leila Schneps, vol. 1. Cambridge Studies in Advanced Mathematics 76. Cambridge University Press, (2008). ISBN: 978-0-521-71801-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.