×

The Riemann problem for the Chaplygin gas equations with a source term. (English) Zbl 1538.35221

Summary: The Riemann solutions for the one-dimensional Chaplygin gas equations with a Coulomb-like friction term are constructed explicitly. It is shown that the delta shock wave appears in the Riemann solutions in some certain situations. The generalized Rankine-Hugoniot conditions of delta shock wave are established and the position, propagation speed and strength of delta shock wave are given, which enables us to see the influence of Coulomb-like friction term on the Riemann solutions for the Chaplygin gas equations clearly. In addition, the relations connected with the area transportation are derived which include mass and momentum transportation.
{© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim}

MSC:

35L67 Shocks and singularities for hyperbolic equations
35L65 Hyperbolic conservation laws
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] M. C.Bento, O.Bertolami, and A. A.Sen, Generalized Chaplygin gas, accelerated expansion and dark‐energy‐matter unification, Phys. Rev. D66(4), 043507 (2002).
[2] N.Bilic, G. B.Tupper, and R. D.Viollier, Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas, Physics Letters B535, 17-21 (2012). · Zbl 0995.83512
[3] Y.Brenier, Solutions with concentration to the Riemann problem for one‐dimensional Chaplygin gas equations, J. Math. Fluid Mech.7, S326-S331 (2005). · Zbl 1085.35097
[4] S.Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys.21, 1-121 (1904).
[5] S.Chen and A.Qu, Two‐dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal.44, 2146-2178 (2012). · Zbl 1257.35126
[6] S.Chen and A.Qu, Riemann boundary value problems and reflection of shock for the Chaplygin gas, Sci. China A55, 671-685 (2012). · Zbl 1239.35094
[7] H.Cheng and H.Yang, Riemann problem for the relativistic Chaplygin Euler equations, J. Math. Anal. Appl.381, 17-26 (2011). · Zbl 1220.35126
[8] H.Cheng and H.Yang, Riemann problem for the isentropic relativistic Chaplygin Euler equations, Z. Angew. Math. Phys.63, 429-440 (2012). · Zbl 1252.35200
[9] N.Cruz, S.Lepe, and F.Pena, Dissipative generalized Chaplygin gas as phantom dark energy, Physics Letters B646, 177-182, (2007)
[10] V. G.Danilov and V. M.Shelkovich, Dynamics of propagation and interaction of δ‐shock waves in conservation law systems, J. Differential Equations221, 333-381 (2005). · Zbl 1072.35121
[11] V. G.Danilov and V. M.Shelkovich, Delta‐shock waves type solution of hyperbolic systems of conservation laws, Q. Appl. Math.63, 401-427 (2005).
[12] F.Gu, Y. G.Lu, and Q.Zhang, Global solutions to one‐dimensional shallow water magnetohydrodynamic equations, J. Math. Anal. Appl.401, 714-723 (2013). · Zbl 1307.35222
[13] L.Guo, W.Sheng, and T.Zhang, The two‐dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal.9, 431-458 (2010). · Zbl 1197.35164
[14] L.Guo, Y.Zhang, and G.Yin, Interactions of delta shock waves for the Chaplygin gas equations with split delta functions, J. Math. Anal. Appl.410, 190-201 (2014). · Zbl 1312.35131
[15] L.Guo, Y.Zhang, and G.Yin, Interactions of delta shock waves for the relativistic Chaplygin gas equations with split delta functions, Math. Meth. Appl. Sci.38, 2132-2148 (2015). · Zbl 1317.35141
[16] G.Faccanoni and A.Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech.37, 1408-1433 (2012).
[17] F.Huang and Z.Wang, Well‐posedness for pressureless flow, Comm. Math. Phys.222, 117-146 (2001). · Zbl 0988.35112
[18] M.Jamil and M. A.Rashid, Interacting modified variable Chaplygin in a non‐flat universe, Eur. Phys. J. C58, 111-114 (2008).
[19] H.Kalisch and D.Mitrovic, Singular solutions of a fully nonlinear 2 × 2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society55, 711-729 (2012). · Zbl 1286.35162
[20] H.Kalisch and D.Mitrovic, Singular solutions for the shallow‐water equations, IMA J. Appl. Math.77, 340‐350 (2012). · Zbl 1257.35123
[21] K. V.Karelsky, A. S.Petrosyan, and S. V.Tarasevich, Nonlinear dynamics of magnethydrodynamic flows of heavy fluid on slope in shallow water approximation, Journal of Experimental and Theoretical Physics146, 352-367 (2014).
[22] D.Kong and C.Wei, Formation and propagation of singlarities in one‐dimensional Chaplygin gas, Journal of Geometry and Physics80, 58-70 (2014). · Zbl 1284.35260
[23] D.Kong, C.Wei, and Q.Zhang, Formation of singularities in one‐dimensional Chaplygin gas, J. Hyperbolic Differential Equations11, 521-562 (2014). · Zbl 1310.35154
[24] G.Lai, W.Sheng, and Y.Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi‐dimensions, Discrete Contin. Dyn. Syst.31, 489-523 (2011). · Zbl 1222.35121
[25] J.Li, T.Zhang, and S.Yang, The Two‐Dimensional Riemann Problem in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 98 (Longman Scientific and Technical, 1998). · Zbl 0935.76002
[26] Y. G.Lu, Existence of global entropy solutions to general system of Keyfitz‐Kranzer type, J. Functional Analysis264, 2457-2468 (2013). · Zbl 1282.35240
[27] M.Nedeljkov, Higher order shadow waves and delta shock blow up in the Chaplygin gas, J. Differential Equations256, 3859-3887 (2014). · Zbl 1288.35350
[28] M.Nedeljkov, Shadow waves: entropies and interactions for delta and singular shocks, Arch. Rational Mech. Anal.197, 487-537 (2010). · Zbl 1201.35134
[29] A.Qu and Z.Wang, Stability of the Riemann solutions for a Chaplygin gas, J. Math. Anal. Appl.409, 347-361 (2014). · Zbl 1306.35073
[30] S. B.Savage and K.Hutter, The motion of finite mass of granular material down a rough incline, Journal of Fluid Mechanics199, 177-215 (1989). · Zbl 0659.76044
[31] D.Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal.191, 539-577 (2009). · Zbl 1161.76025
[32] M. R.Setare, Holographic Chaplygin DGP cosmologies, Internat. J. Modern Phys. D18, 419-427 (2009). · Zbl 1173.83319
[33] C.Shen, The Riemann problem for the pressureless Euler system with Coulomb‐like friction term, preprint. · Zbl 1336.35281
[34] C.Shen and M.Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw‐Rascle model, J. Differential Equations249, 3024-3051 (2010). · Zbl 1211.35193
[35] W.Sheng and T.Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc.137(N654), (1999), AMS: Providence. · Zbl 0913.35082
[36] J.Smoller, Shock Waves and Reaction‐Diffusion Equations (Springer‐Verlag, NewYork, 1994). · Zbl 0807.35002
[37] H. S.Tsien, Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci.6, 399-407 (1939). · JFM 65.1496.05
[38] T.vonKármán, Compressibility effects in aerodynamics, J. Aeronaut. Sci.8, 337-365 (1941). · JFM 67.0853.01
[39] G.Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl.403, 434-450 (2013). · Zbl 1426.76207
[40] G.Wang, B.Chen, and Y.Hu, The two‐dimensional Riemann problem for Chaplygin gas dynamics with three constant states, J. Math. Anal. Appl.393, 544-562 (2012). · Zbl 1250.35148
[41] Z.Wang and Q.Zhang, The Riemann problem with delta initial data for the one‐dimensional Chaplygin gas equations, Acta Math. Sci.32B, 825-841 (2012). · Zbl 1274.35232
[42] H.Yang and J.Wang, Delta‐shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas, J. Math. Anal. Appl.413, 800-820 (2014). · Zbl 1308.76233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.