×

Integral representation of vertical operators on the Bergman space over the upper half-plane. (English. French summary) Zbl 1535.30130

Summary: Let \(\Pi\) denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space \(\mathcal{A}^2(\Pi)\) over the upper half-plane can be uniquely represented as an integral operator of the form \[ \left(S_\varphi f\right)(z)=\int_{\Pi}f(w)\varphi(z-\overline{w}) d\mu(w),\;\forall f\in\mathcal{A}^2(\Pi),\,z\in \Pi, \] where \(\varphi\) is an analytic function on \(\Pi\) given by \[ \varphi(z)=\int_{\mathbb{R}_+}\xi\sigma(\xi)e^{iz\xi}d\xi, \; \forall z\in\Pi \] for some \(\sigma\in L^\infty(\mathbb{R}_+)\). Here \(d\mu (w)\) is the Lebesgue measure on \(\Pi\). Later on, with the help of above integral representation, we obtain various operator theoretic properties of the vertical operators.
Also, we give integral representation of the form \(S_\varphi\) for all the operators in the \(C^\ast\)-algebra generated by Toeplitz operators \(T_{\mathbf{a}}\) with vertical symbols \(\mathbf{a}\in L^\infty(\Pi)\).

MSC:

30H20 Bergman spaces and Fock spaces
47A15 Invariant subspaces of linear operators
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators

References:

[1] Bais, Shubham R.; Venku Naidu, Dogga, Study of twisted Bargmann transform via Bargmann transform, Forum Math., 33, 6, 1659-1670, 2021 · Zbl 1486.30142 · doi:10.1515/forum-2021-0113
[2] Bargmann, Valentine, On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., 14, 187-214, 1961 · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[3] Bhatia, Rajendra, Notes on functional analysis, 50, 2009, Hindustan Book Agency · Zbl 1175.46001 · doi:10.1007/978-93-86279-45-3
[4] Conway, John B., A course in operator theory, 21, 2000, American Mathematical Society · Zbl 0936.47001
[5] Douglas, Ronald G., Banach algebra techniques in operator theory, 49, 1972, Academic Press, New Yor · Zbl 0247.47001
[6] Esmeral, Kevin; Maximenko, Egor A.; Vasilevski, Nikolai L., \({C}^*\)-algebra generated by angular Toeplitz operators on the weighted Bergman spaces over the upper half-plane, Integral Equations Oper. Theory, 83, 3, 413-428, 2015 · Zbl 1329.47078 · doi:10.1007/s00020-015-2243-4
[7] Esmeral, Kevin; Vasilevski, Nikolai L., \({C}*\)-algebra generated by horizontal Toeplitz operators on the Fock space, Bol. Soc. Mat. Mex., 22, 2, 567-582, 2016 · Zbl 1369.47033 · doi:10.1007/s40590-016-0110-1
[8] Folland, Gerald B., Harmonic analysis in phase space, 122, 1989, Princeton University Press · Zbl 0682.43001 · doi:10.1515/9781400882427
[9] Folland, Gerald B., Fourier Analysis and Its Applications, 1992, Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software · Zbl 0786.42001
[10] Grudsky, Sergei M.; Quiroga-Barranco, Raul; Vasilevski, Nikolai L., Commutative \({C}^*\)-algebras of Toeplitz operators and quantization on the unit disk, J. Funct. Anal., 234, 1, 1-44, 2006 · Zbl 1100.47033 · doi:10.1016/j.jfa.2005.11.015
[11] Grudsky, Sergei M.; Vasilevski, Nikolai L., Bergman-Toeplitz operators: radial component influence, Integral Equations Oper. Theory, 40, 1, 16-33, 2001 · Zbl 0993.47023 · doi:10.1007/BF01202952
[12] Grudsky, Sergei M.; Vasilevski, Nikolai L., Toeplitz operators on the Fock space: radial component effects, Integral Equations Oper. Theory, 44, 1, 10-37, 2002 · Zbl 1039.47015 · doi:10.1007/BF01197858
[13] Herrera Yañez, Crispin; Hutník, Ondrej; Maximenko, Egor A., Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions, C. R. Math. Acad. Sci. Paris, 352, 2, 129-132, 2014 · Zbl 1293.47030 · doi:10.1016/j.crma.2013.12.004
[14] Herrera Yañez, Crispin; Maximenko, Egor A.; Vasilevski, Nikolai L., Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions, Integral Equations Oper. Theory, 77, 2, 149-166, 2013 · Zbl 1293.47029 · doi:10.1007/s00020-013-2081-1
[15] Singh, Raj K.; Kumar, Ashok, Compact composition operators, J. Aust. Math. Soc., 28, 3, 309-314, 1979 · Zbl 0422.47015 · doi:10.1017/S1446788700012258
[16] Vasilevski, Nikolai L., On Bergman-Toeplitz operators with commutative symbol algebras, Integral Equations Oper. Theory, 34, 1, 107-126, 1999 · Zbl 0935.47025 · doi:10.1007/BF01332495
[17] Vasilevski, Nikolai L., Commutative algebras of Toeplitz operators on the Bergman space, 185, 2008, Birkhäuser · Zbl 1168.47057
[18] Zhu, Kehe, Analysis on Fock spaces, 263, 2012, Springer · Zbl 1262.30003
[19] Zhu, Kehe, Handbook of analytic operator theory, Towards a dictionary for the Bargmann transform, 319-349, 2019, CRC Press · Zbl 1415.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.