×

\(L^2\)-critical nonuniqueness for the 2D Navier-Stokes equations. (English) Zbl 1531.35213

As it is well known [G. Furioli et al., Rev. Mat. Iberoam. 16, No. 3, 605–667 (2000; Zbl 0970.35101); J.-q. Mo, Appl. Math. Mech., Engl. Ed. 31, No. 12, 1577–1584 (2010; Zbl 1207.35090)], the existence and uniqueness for the Cauchy problem for the two-dimensional Navier-Stokes equations hold for \(L^2\) initial data, even in a bigger class than the Leray solutions. The authors discuss the case of \(L^p\), \(p<1\), data (on the two-dimensional torus \(\mathbb{T}^2\)) and shown nonuniqueness of solutions in general case. In particular, solutions with “almost” prescribed smooth energy function are shown to exist thanks to convex integration arguments.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Ben-Artzi, Matania, Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal., 128, 4, 329-358 (1994) · Zbl 0837.35110 · doi:10.1007/BF00387712
[2] Beekie, Rajendra; Buckmaster, Tristan; Vicol, Vlad, Weak solutions of ideal MHD which do not conserve magnetic helicity, Ann. PDE, 6, 1, 1-40 (2020) · Zbl 1462.35282 · doi:10.1007/s40818-020-0076-1
[3] Bahouri, Hajer, Chemin, Jean-Yves., Danchin, Raphaël: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011) · Zbl 1227.35004
[4] Buckmaster, Tristan; Colombo, Maria; Vicol, Vlad, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, J. Eur. Math. Soc. (JEMS), 24, 9, 3333-3378 (2022) · Zbl 1493.35063 · doi:10.4171/JEMS/1162
[5] Buckmaster, Tristan; De Lellis, Camillo; Isett, Philip; Székelyhidi, László Jr, Anomalous dissipation for \(1/5\)-Hölder Euler flows, Ann. of Math. (2), 182, 1, 127-172 (2015) · Zbl 1330.35303 · doi:10.4007/annals.2015.182.1.3
[6] Buckmaster, Tristan; De Lellis, Camillo; Székelyhidi, László Jr, Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math., 69, 9, 1613-1670 (2016) · Zbl 1351.35109 · doi:10.1002/cpa.21586
[7] Benfatto, G.; Esposito, R.; Pulvirenti, M., Planar Navier-Stokes flow for singular initial data, Nonlinear Anal., 9, 6, 533-545 (1985) · Zbl 0621.76027 · doi:10.1016/0362-546X(85)90039-2
[8] Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math., to appear, (2018) · Zbl 1480.35317
[9] Buckmaster, Tristan, Masmoudi, Nader, Novack, Matthew, Vicol, Vlad: Non-conservative \(H^{\frac{1}{2}-}\) weak solutions of the incompressible 3d euler equations. arXiv:2101.09278, (2021) · Zbl 1535.35002
[10] Burczak, Jan; Modena, Stefano; Székelyhidi, László, Non uniqueness of power-law flows, Comm. Math. Phys., 388, 1, 199-243 (2021) · Zbl 1477.35158 · doi:10.1007/s00220-021-04231-7
[11] Bourgain, Jean; Pavlović, Nataša, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255, 9, 2233-2247 (2008) · Zbl 1161.35037 · doi:10.1016/j.jfa.2008.07.008
[12] Buckmaster, Tristan; Shkoller, Steve; Vicol, Vlad, Nonuniqueness of weak solutions to the SQG equation, Comm. Pure Appl. Math., 72, 9, 1809-1874 (2019) · Zbl 1427.35200 · doi:10.1002/cpa.21851
[13] Buckmaster, Tristan; Vicol, Vlad, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. of Math. (2), 189, 1, 101-144 (2019) · Zbl 1412.35215 · doi:10.4007/annals.2019.189.1.3
[14] Buckmaster, Tristan; Vicol, Vlad, Convex integration constructions in hydrodynamics, Bull. Amer. Math. Soc. (N.S.), 58, 1, 1-44 (2021) · Zbl 1461.35186 · doi:10.1090/bull/1713
[15] Calderón, Calixto P., Existence of weak solutions for the Navier-Stokes equations with initial data in \(L^p\), Trans. Amer. Math. Soc., 318, 1, 179-200 (1990) · Zbl 0707.35118
[16] Cheskidov, A.; Constantin, P.; Friedlander, S.; Shvydkoy, R., Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21, 6, 1233-1252 (2008) · Zbl 1138.76020 · doi:10.1088/0951-7715/21/6/005
[17] Ciampa, Gennaro; Crippa, Gianluca; Spirito, Stefano, Weak solutions obtained by the vortex method for the 2D Euler equations are Lagrangian and conserve the energy, J. Nonlinear Sci., 30, 6, 2787-2820 (2020) · Zbl 1467.35256 · doi:10.1007/s00332-020-09635-8
[18] Colombo, Maria; De Lellis, Camillo; De Rosa, Luigi, Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations, Comm. Math. Phys., 362, 2, 659-688 (2018) · Zbl 1402.35204 · doi:10.1007/s00220-018-3177-x
[19] Cheskidov, A.; Lopes Filho, MC; Nussenzveig Lopes, HJ; Shvydkoy, R., Energy conservation in two-dimensional incompressible ideal fluids, Comm. Math. Phys., 348, 1, 129-143 (2016) · Zbl 1351.35112 · doi:10.1007/s00220-016-2730-8
[20] Chemin, Jean-Yves; Gallagher, Isabelle, On the global wellposedness of the 3-D Navier-Stokes equations with large initial data, Ann. Sci. École Norm. Sup. (4), 39, 4, 679-698 (2006) · Zbl 1124.35052 · doi:10.1016/j.ansens.2006.07.002
[21] Chemin, Jean-Yves; Gallagher, Isabelle; Paicu, Marius, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math. (2), 173, 2, 983-1012 (2011) · Zbl 1229.35168 · doi:10.4007/annals.2011.173.2.9
[22] Cheskidov, Alexey, Luo, Xiaoyutao: Nonuniqueness of weak solutions for the transport equation at critical space regularity. Ann. PDE, 7(1):Paper No. 2, 45, (2021) · Zbl 1469.35001
[23] Cheskidov, Alexey; Luo, Xiaoyutao, Sharp nonuniqueness for the Navier-Stokes equations, Invent. Math., 229, 3, 987-1054 (2022) · Zbl 1504.35221 · doi:10.1007/s00222-022-01116-x
[24] Cottet, Georges-Henri, Équations de Navier-Stokes dans le plan avec tourbillon initial mesure, C. R. Acad. Sci. Paris Sér. I Math., 303, 4, 105-108 (1986) · Zbl 0606.35065
[25] Cheskidov, A.; Shvydkoy, R., Ill-posedness of the basic equations of fluid dynamics in Besov spaces, Proc. Amer. Math. Soc., 138, 3, 1059-1067 (2010) · Zbl 1423.76085 · doi:10.1090/S0002-9939-09-10141-7
[26] Dai, Mimi, Nonunique weak solutions in Leray-Hopf class for the three-dimensional Hall-MHD system, SIAM J. Math. Anal., 53, 5, 5979-6016 (2021) · Zbl 1503.76128 · doi:10.1137/20M1359420
[27] De Lellis, C.; Székelyhidi, L. Jr, The Euler equations as a differential inclusion, Ann. of Math. (2), 170, 3, 1417-1436 (2009) · Zbl 1350.35146 · doi:10.4007/annals.2009.170.1417
[28] De Lellis, Camillo; Székelyhidi, László Jr, Dissipative continuous Euler flows, Invent. Math., 193, 2, 377-407 (2013) · Zbl 1280.35103 · doi:10.1007/s00222-012-0429-9
[29] De Lellis, Camillo; Székelyhidi, László Jr, Dissipative Euler flows and Onsager’s conjecture, J. Eur. Math. Soc. (JEMS), 16, 7, 1467-1505 (2014) · Zbl 1307.35205 · doi:10.4171/JEMS/466
[30] De Lellis, Camillo; Székelyhidi, László Jr, On turbulence and geometry: from Nash to Onsager, Notices Amer. Math. Soc., 66, 5, 677-685 (2019) · Zbl 1436.76009
[31] De Rosa, Luigi, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations, Comm. Partial Differential Equations, 44, 4, 335-365 (2019) · Zbl 1416.35183 · doi:10.1080/03605302.2018.1547745
[32] Daneri, Sara; Székelyhidi, László Jr, Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224, 2, 471-514 (2017) · Zbl 1372.35221 · doi:10.1007/s00205-017-1081-8
[33] Fabes, EB; Jones, BF; Rivière, NM, The initial value problem for the Navier-Stokes equations with data in \(L^p\), Arch. Rational Mech. Anal., 45, 222-240 (1972) · Zbl 0254.35097 · doi:10.1007/BF00281533
[34] Furioli, Giulia; Lemarié-Rieusset, Pierre G.; Terraneo, Elide, Unicité dans \(L^3({\mathbb{R}}^3)\) et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, 16, 3, 605-667 (2000) · Zbl 0970.35101 · doi:10.4171/RMI/286
[35] Faraco, Daniel; Lindberg, Sauli; Székelyhidi, László Jr, Bounded solutions of ideal MHD with compact support in space-time, Arch. Ration. Mech. Anal., 239, 1, 51-93 (2021) · Zbl 1462.76208 · doi:10.1007/s00205-020-01570-y
[36] Germain, Pierre, Solutions globales d’énergie infinie de l’équation de Navier-Stokes 2D, C. R. Math. Acad. Sci. Paris, 340, 7, 547-550 (2005) · Zbl 1067.35063 · doi:10.1016/j.crma.2005.02.012
[37] Germain, Pierre, The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255, 9, 2248-2264 (2008) · Zbl 1173.35097 · doi:10.1016/j.jfa.2008.07.014
[38] Gallagher, Isabelle; Gallay, Thierry, Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann., 332, 2, 287-327 (2005) · Zbl 1096.35102 · doi:10.1007/s00208-004-0627-x
[39] Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis, On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity, Math. Nachr., 278, 14, 1665-1672 (2005) · Zbl 1083.35092 · doi:10.1002/mana.200410331
[40] Giga, Yoshikazu; Miyakawa, Tetsuro; Osada, Hirofumi, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104, 3, 223-250 (1988) · Zbl 0666.76052 · doi:10.1007/BF00281355
[41] Giga, Y.; Matsui, S.; Sawada, O., Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech., 3, 3, 302-315 (2001) · Zbl 0992.35066 · doi:10.1007/PL00000973
[42] Gallagher, Isabelle; Planchon, Fabrice, On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Ration. Mech. Anal., 161, 4, 307-337 (2002) · Zbl 1027.35090 · doi:10.1007/s002050100175
[43] Isett, Philip, A proof of Onsager’s conjecture, Ann. of Math. (2), 188, 3, 871-963 (2018) · Zbl 1416.35194 · doi:10.4007/annals.2018.188.3.4
[44] Isett, Philip, Vicol, Vlad: Hölder continuous solutions of active scalar equations. Ann. PDE 1(1),Art. 2, 77 (2015) · Zbl 1395.35061
[45] Kato, Tosio, The Navier-Stokes equation for an incompressible fluid in \({ {R}}^2\) with a measure as the initial vorticity, Differential Integral Equations, 7, 3-4, 949-966 (1994) · Zbl 0826.35094
[46] Koch, Herbert; Tataru, Daniel, Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 1, 22-35 (2001) · Zbl 0972.35084 · doi:10.1006/aima.2000.1937
[47] Kuiper, Nicolaas H.: On \(C^1\)-isometric imbeddings. I, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math., 17:545-556, (1955) · Zbl 0067.39601
[48] Kuiper, Nicolaas H.: On \(C^1\)-isometric imbeddings. II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math., 17:683-689, (1955) · Zbl 0067.39601
[49] Ladyzhenskaja, O. A.: Solution “in the large” to the boundary-value problem for the Navier-Stokes equations in two space variables. Dokl. Akad. Nauk SSSR, 123:427-429), (1958) · Zbl 0090.41502
[50] Leray, Jean, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, Journal de Mathématiques Pures et Appliquées, 12, 1-82 (1933) · Zbl 0006.16702
[51] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 1, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[52] Lanthaler, S.; Mishra, S.; Pares-Pulido, C., On the conservation of energy in two-dimensional incompressible flows, Nonlinearity, 34, 2, 1084-1136 (2021) · Zbl 1464.35232 · doi:10.1088/1361-6544/abb452
[53] Luo, Tianwen; Peng, Qu, Non-uniqueness of weak solutions to 2D hypoviscous Navier-Stokes equations, J. Differential Equations, 269, 4, 2896-2919 (2020) · Zbl 1434.35059 · doi:10.1016/j.jde.2020.02.014
[54] Lemarié-Rieusset, Pierre Gilles, The Navier-Stokes problem in the 21st century (2016), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1342.76029 · doi:10.1201/b19556
[55] Luo, Tianwen, Titi, Edriss S.: Non-uniqueness of weak solutions to hyperviscous Navier-Stokes equations: on sharpness of J.-L. Lions exponent. Calc. Var. Partial Differential Equations, 59(3):Paper No. 92, 15, (2020) · Zbl 1437.35542
[56] Luo, Xiaoyutao, Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions, Arch. Ration. Mech. Anal., 233, 2, 701-747 (2019) · Zbl 1426.35179 · doi:10.1007/s00205-019-01366-9
[57] Mazzucato, Anna L., Besov-Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355, 4, 1297-1364 (2003) · Zbl 1022.35039 · doi:10.1090/S0002-9947-02-03214-2
[58] Modena, Stefano, Székelyhidi, László, Jr.: Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE, 4(2):Art. 18, 38, (2018) · Zbl 1411.35066
[59] Modena, Stefano; Sattig, Gabriel, Convex integration solutions to the transport equation with full dimensional concentration, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37, 5, 1075-1108 (2020) · Zbl 1458.35363 · doi:10.1016/j.anihpc.2020.03.002
[60] Nash, John, \(C^1\) isometric imbeddings, Ann. of Math., 2, 60, 383-396 (1954) · Zbl 0058.37703 · doi:10.2307/1969840
[61] Novack, Matthew, Nonuniqueness of weak solutions to the 3 dimensional quasi-geostrophic equations, SIAM J. Math. Anal., 52, 4, 3301-3349 (2020) · Zbl 1446.76075 · doi:10.1137/19M1281009
[62] Paicu, Marius; Zhang, Zhifei, Global well-posedness for 3D Navier-Stokes equations with ill-prepared initial data, J. Inst. Math. Jussieu, 13, 2, 395-411 (2014) · Zbl 1291.35191 · doi:10.1017/S1474748013000212
[63] Shvydkoy, R., Convex integration for a class of active scalar equations, J. Amer. Math. Soc., 24, 4, 1159-1174 (2011) · Zbl 1231.35177 · doi:10.1090/S0894-0347-2011-00705-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.