×

Weak solutions obtained by the vortex method for the 2D Euler equations are Lagrangian and conserve the energy. (English) Zbl 1467.35256

This paper studies a class of weak solutions of 2D unsteady incompressible Euler equations with initial data in \(L^2_{\mathrm{loc}}(\mathbb{R}^2)\). Such weak solutions are called VB-solutions and are obtained by the method of the vortex-blob approximation. First the authors show that VB-solutions are Lagrangian. Secondly under the assumption that the initial vorticity is in \(L^p(\mathbb{R}^2)\) with zero mean value and compact support for \(p>1\), the authors prove the conservation of the kinetic energy for the corresponding VB solution.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q31 Euler equations
35D30 Weak solutions to PDEs
35F55 Initial value problems for systems of nonlinear first-order PDEs
76B47 Vortex flows for incompressible inviscid fluids

Software:

SimEuler

References:

[1] Ambrose, DM; Kelliher, JP; Lopes Filho, MC; Nussenzveig Lopes, HJ, Serfati solutions to the 2D Euler equations on exterior domain, J. Differ. Equ., 259, 4509-4560 (2015) · Zbl 1321.35144 · doi:10.1016/j.jde.2015.06.001
[2] Ambrosio, L., Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158, 227-260 (2004) · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[3] Beale, J. T.: The approximation of weak solutions to the 2-D Euler equations by vortex elements. Multidymensional Hyperbolic Problems and Computations, In: Glimm, J., Majda, A. (eds.) IMA Vol. Math. Appl. 29, 23-37 (1991) · Zbl 0850.76491
[4] Bohun, A., Bouchut, F., Crippa, G.: Lagrangian solutions to the 2D Euler system with \(L^1\) vorticity and infinite energy. Nonlinear Anal. Theory, Methods Appl. 132, 160-172 (2016) · Zbl 1382.35199
[5] Bouchut, F.; Crippa, G., Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperb. Differ. Equ., 10, 235-282 (2013) · Zbl 1275.35076 · doi:10.1142/S0219891613500100
[6] Bressan, A., Murray, R.: On self-similar solutions to the incompressible Euler equations (2020) http://personal.psu.edu/axb62/PSPDF/EulerSS50.pdf · Zbl 1442.35313
[7] Bressan, A., Shen, W.: A posteriori error estimates for self-similar solutions to the Euler Equations (2020) https://arxiv.org/abs/2002.01962
[8] Cheskidov, A.; Lopes Filho, MC; Nussenzveig Lopes, HJ; Shvydkoy, R., Energy conservation in Two-dimensional incompressible ideal fluids, Commun. Math. Phys, 348, 129-143 (2016) · Zbl 1351.35112 · doi:10.1007/s00220-016-2730-8
[9] Cheskidov, A., Luo, X.: Nonuniqueness of weak solutions for the transport equation at critical space regularity (2020) arXiv:2004.09538
[10] Crippa, G.; De Lellis, C., Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616, 15-46 (2008) · Zbl 1160.34004
[11] Crippa, G.; Nobili, C.; Seis, C.; Spirito, S., Eulerian and Lagrangian solutions to the continuity and Euler equations with \(L^1\) vorticity, SIAM J. Math. Anal., 49, 5, 3973-3998 (2017) · Zbl 1379.35224 · doi:10.1137/17M1130988
[12] Crippa, G.; Spirito, S., Renormalized solutions of the 2D Euler equations, Commun. Math. Phys., 339, 191-198 (2015) · Zbl 1320.35267 · doi:10.1007/s00220-015-2411-z
[13] Delort, J-M, Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., 4, 553-586 (1991) · Zbl 0780.35073 · doi:10.1090/S0894-0347-1991-1102579-6
[14] DiPerna, RJ; Lions, P-L, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511-547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[15] DiPerna, RJ; Majda, A., Concentrations in regularizations for 2-D incompressible flow, Commun. Pure Appl. Math., 40, 301-345 (1987) · Zbl 0850.76730 · doi:10.1002/cpa.3160400304
[16] Lichtenstein, L., Über einige Existenzproblem der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze, M. Z., 23, 89-154 (1925) · JFM 51.0658.01 · doi:10.1007/BF01506223
[17] Liu, J-G; Xin, Z., Convergence of vortex methods for weak solutions to the 2-D Euler equations with vortex sheets data, Commun. Pure Appl. Math., 48, 611-628 (1995) · Zbl 0829.35098 · doi:10.1002/cpa.3160480603
[18] Lopes Filho, MC; Mazzucato, AL; Nussenzveig Lopes, HJ, Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence, Arch. Ration. Mech. Anal, 179, 3, 353-387 (2006) · Zbl 1138.76362 · doi:10.1007/s00205-005-0390-5
[19] Majda, AJ, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., 42, 921-939 (1993) · Zbl 0791.76015 · doi:10.1512/iumj.1993.42.42043
[20] Majda, AJ; Bertozzi, AL, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 0983.76001
[21] Modena, S., Sattig, G.: Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincarè Anal. Non Linèaire, in press (2020). doi:10.1016/j.anihpc.2020.03.002 · Zbl 1458.35363
[22] Modena, S.; Szèkelyhidi, L. Jr, Non-uniqueness for the transport equation with Sobolev vector fields, Ann. PDE, 4, 2, 18 (2018) · Zbl 1411.35066 · doi:10.1007/s40818-018-0056-x
[23] Modena, S.; Szèkelyhidi, L. Jr, Non-renormalized solutions to the continuity equation, Calc. Var., 58, 208 (2019) · Zbl 1428.35005 · doi:10.1007/s00526-019-1651-8
[24] Serfati, P., Solutions \(C^\infty\) en temps, \(n\)-log Lipschitz bornées en espace et équation d’Euler, C. R. Acad. Sci. Paris Sér. I Math., 320, 555-558 (1995) · Zbl 0835.76012
[25] Stein, EM, Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[26] Vecchi, I.; Wu, SJ, On \(L^1\)-vorticity for 2-D incompressible flow, Manuscripta Math., 78, 4, 403-412 (1993) · Zbl 0807.35115 · doi:10.1007/BF02599322
[27] Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I (2018a) arXiv:1805.09426
[28] Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II (2018b) arXiv:1805.09440
[29] Wolibner, W., Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogene, incompressible, pendant un temps infiniment long, Math. Z., 37, 698-726 (1933) · Zbl 0008.06901 · doi:10.1007/BF01474610
[30] Yudovič, VI, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3, 1032-1066 (1963) · Zbl 0129.19402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.