×

Wigner function dynamics with boundaries expressed as convolution. (English) Zbl 1530.81112

Summary: In the present paper a method of finding the dynamics of the Wigner function of a particle in an infinite quantum well is developed. Starting with the problem of a reflection from an impenetrable wall, the obtained solution is then generalized to the case of a particle confined in an infinite well in arbitrary dimensions. It is known, that boundary value problems in the phase space formulation of the quantum mechanics are surprisingly tricky. The complications arise from nonlocality of the expression involved in calculation of the Wigner function. Several ways of treating such problems were proposed. They are rather complicated and even exotic, involving, for example, corrections to the kinetic energy proportional to the derivatives of the Dirac delta-function. The presented in the manuscript approach is simpler both from analytical point of view and regarding numerical calculation. The solution is brought to a form of convolution of the free particle solution with some function, defined by the shape of the well. This procedure requires calculation of an integral, which can be done by developed analytical and numerical methods.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81S08 Canonical quantization
35G15 Boundary value problems for linear higher-order PDEs
94B10 Convolutional codes
51F15 Reflection groups, reflection geometries

References:

[1] Wigner, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 749 (1932) · JFM 58.0948.07 · doi:10.1103/PhysRev.40.749
[2] Weyl, H., Quantenmechanik und gruppentheorie, Z. Phys., 46, 1 (1927) · JFM 53.0848.02 · doi:10.1007/BF02055756
[3] Moyal, J. E., Quantum mechanics as a statistical theory, Math. Proc. Camb. Phil. Soc., 45, 99 (1949) · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[4] Dias, N. C.; Prata, J. N., Features of moyal trajectories, J. Math. Phys., 48 (2007) · Zbl 1121.81078 · doi:10.1063/1.2409495
[5] Walton, M. A., Wigner functions, contact interactions and matching, Ann. Phys., NY, 322, 2233 (2007) · Zbl 1124.81028 · doi:10.1016/j.aop.2006.11.015
[6] Curtright, T.; Fairlie, D.; Zachos, C., Features of time-independent Wigner functions, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.025002
[7] Kryukov, S.; Walton, M., On infinite walls in deformation quantization, Ann. Phys., NY, 317, 474 (2005) · Zbl 1091.81053 · doi:10.1016/j.aop.2004.12.004
[8] Belchev, B.; Walton, M. A., On Robin boundary conditions and the Morse potential in quantum mechanics, J. Phys. A: Math. Theor., 43 (2010) · Zbl 1185.81066 · doi:10.1088/1751-8113/43/8/085301
[9] Dias, N. C.; Prata, J. N., Wigner functions with boundaries, J. Math. Phys., 43, 4602 (2002) · Zbl 1060.81045 · doi:10.1063/1.1504885
[10] Dias, N. C.; Prata, J. N., Boundaries and profiles in the Wigner formalism, J. Comput. Electron., 20, 2020 (2021) · doi:10.1007/s10825-021-01803-7
[11] Polkovnikov, A., Phase space representation of quantum dynamics, Ann. Phys., NY, 325, 1790 (2010) · Zbl 1194.81139 · doi:10.1016/j.aop.2010.02.006
[12] Zachos, C., Deformation quantization: quantum mechanics lives and works in phase-space, Int. J. Mod. Phys. A, 17, 297 (2002) · Zbl 1040.81050 · doi:10.1142/S0217751X02006079
[13] Curtright, T.; Fairlie, D.; Zachos, C., A Concise Treatise on Quantum Mechanics in Phase Space (2014), World Scientific · Zbl 1291.81003
[14] Curtright, T. L.; Zachos, C. K., Quantum mechanics in phase space, Asia Pac. Phys. Newsl., 1, 37 (2012) · doi:10.1142/S2251158X12000069
[15] Case, W. B., Wigner functions and Weyl transforms for pedestrians, Am. J. Phys., 76, 937 (2008) · doi:10.1119/1.2957889
[16] Clark, T. E.; Menikoff, R.; Sharp, D. H., Quantum mechanics on the half-line using path integrals, Phys. Rev. D, 22, 3012 (1980) · doi:10.1103/PhysRevD.22.3012
[17] De Vincenzo, S., Impenetrable barriers in quantum mechanics, Rev. Mex. Fis. E, 54, 1 (2008)
[18] Vincenzo, S. D.; Sánchez, C.; Vincenzo, S. D.; Sánchez, C., One-dimensional point interactions and bound states, Rev. Mex. Fis. E, 62, 117 (2016)
[19] Al-Hashimi, M. H.; Wiese, U-J, Canonical quantization on the half-line and in an interval based upon an alternative concept for the momentum in a space with boundaries, Phys. Rev. Res., 3 (2021) · doi:10.1103/PhysRevResearch.3.033079
[20] Andrews, M., Wave packets bouncing off walls, Am. J. Phys., 66, 252 (1998) · doi:10.1119/1.18854
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.