×

Central limit theorems for high dimensional dependent data. (English) Zbl 1530.60022

Summary: Motivated by statistical inference problems in high-dimensional time series data analysis, we first derive non-asymptotic error bounds for Gaussian approximations of sums of high-dimensional dependent random vectors on hyper-rectangles, simple convex sets and sparsely convex sets. We investigate the quantitative effect of temporal dependence on the rates of convergence to a Gaussian random vector over three different dependency frameworks (\(\alpha\)-mixing, \(m\)-dependent, and physical dependence measure). In particular, we establish new error bounds under the \(\alpha\)-mixing framework and derive faster rate over existing results under the physical dependence measure. To implement the proposed results in practical statistical inference problems, we also derive a data-driven parametric bootstrap procedure based on a kernel-type estimator for the long-run covariance matrices. The unified Gaussian and parametric bootstrap approximation results can be used to test mean vectors with combined \(\ell^2\) and \(\ell^{\infty}\) type statistics, do change point detection, and construct confidence regions for covariance and precision matrices, all for time series data.

MSC:

60F05 Central limit and other weak theorems
62F35 Robustness and adaptive procedures (parametric inference)
62F40 Bootstrap, jackknife and other resampling methods

Software:

HDtest

References:

[1] Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 817-858. 10.2307/2938229 MathSciNet: MR1106513 · Zbl 0732.62052
[2] Baldi, P. and Rinott, Y. (1989). On normal approximations of distributions in terms of dependency graphs. Ann. Probab. 17 1646-1650. Digital Object Identifier: 10.1214/aop/1176991178 Google Scholar: Lookup Link Euclid: euclid.aop/1176991178 zbMATH: 0691.60020 MathSciNet: MR1048950 · Zbl 0691.60020 · doi:10.1214/aop/1176991178
[3] Bentkus, V. (2003). On the dependence of the Berry-Esseen bound on dimension. J. Statist. Plann. Inference 113 385-402. 10.1016/S0378-3758(02)00094-0 MathSciNet: MR1965117 zbMATH: 1017.60023 · Zbl 1017.60023
[4] Berkes, I., Liu, W. and Wu, W.B. (2014). Komlós-Major-Tusnády approximation under dependence. Ann. Probab. 42 794-817. 10.1214/13-AOP850 MathSciNet: MR3178474 · Zbl 1308.60037
[5] Bhattacharya, R.N. and Holmes, S. (2010). An exposition of Götze’s estimation of the rate of convergence in the multivariate central limit theorem. Available at arXiv:1003.4254.
[6] Bhattacharya, R.N. and Rao, R.R. (2010). Normal Approximation and Asymptotic Expansions. Classics in Applied Mathematics 64. Philadelphia, PA: SIAM. 10.1137/1.9780898719895.ch1 MathSciNet: MR3396213 · Zbl 1222.41002
[7] Boussama, F., Fuchs, F. and Stelzer, R. (2011). Stationarity and geometric ergodicity of BEKK multivariate GARCH models. Stochastic Process. Appl. 121 2331-2360. 10.1016/j.spa.2011.06.001 MathSciNet: MR2822779 · Zbl 1250.62043
[8] Bradley, R.C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107-144. 10.1214/154957805100000104 MathSciNet: MR2178042 · Zbl 1189.60077
[9] Bradley, R.C. (2007). Introduction to Strong Mixing Conditions. Vol. 2. Heber City, UT: Kendrick Press. MathSciNet: MR2325295 · Zbl 1133.60002
[10] Cai, T.T., Liu, W. and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 349-372. 10.1111/rssb.12034 MathSciNet: MR3164870 · Zbl 07555454
[11] Chang, J., Chen, X. and Wu, M. (2024). Supplement to “Central limit theorems for high dimensional dependent data.” 10.3150/23-BEJ1614SUPP
[12] Chang, J., Hu, Q., Liu, C. and Tang, C.Y. (2023). Optimal covariance matrix estimation for high-dimensional noise in high-frequency data. J. Econometrics. To appear. 10.1016/j.jeconom.2022.06.010 · Zbl 07813999
[13] Chang, J., Jiang, Q. and Shao, X. (2023). Testing the martingale difference hypothesis in high dimension. J. Econometrics. To appear. 10.1016/j.jeconom.2022.09.001 · Zbl 07704481
[14] Chang, J., Qiu, Y., Yao, Q. and Zou, T. (2018). Confidence regions for entries of a large precision matrix. J. Econometrics 206 57-82. 10.1016/j.jeconom.2018.03.020 MathSciNet: MR3840783 · Zbl 1398.62068
[15] Chang, J., Tang, C.Y. and Wu, Y. (2013). Marginal empirical likelihood and sure independence feature screening. Ann. Statist. 41 2123-2148. 10.1214/13-AOS1139 MathSciNet: MR3127860 · Zbl 1277.62109
[16] Chang, J., Yao, Q. and Zhou, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations. Biometrika 104 111-127. 10.1093/biomet/asw066 MathSciNet: MR3626482 · Zbl 1506.62307
[17] Chang, J., Zheng, C., Zhou, W.-X. and Zhou, W. (2017a). Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity. Biometrics 73 1300-1310. 10.1111/biom.12695 MathSciNet: MR3744543 · Zbl 1405.62162
[18] Chang, J., Zhou, W., Zhou, W.-X. and Wang, L. (2017b). Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering. Biometrics 73 31-41. 10.1111/biom.12552 MathSciNet: MR3632349 · Zbl 1366.62206
[19] Chen, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist. 46 642-678. 10.1214/17-AOS1563 MathSciNet: MR3782380 · Zbl 1396.62019
[20] Chen, X. and Kato, K. (2019). Randomized incomplete \(U\)-statistics in high dimensions. Ann. Statist. 47 3127-3156. 10.1214/18-AOS1773 MathSciNet: MR4025737 · Zbl 1435.62075
[21] Chen, X. and Kato, K. (2020). Jackknife multiplier bootstrap: Finite sample approximations to the \(U\)-process supremum with applications. Probab. Theory Related Fields 176 1097-1163. 10.1007/s00440-019-00936-y MathSciNet: MR4087490 · Zbl 1439.62067
[22] Chen, S.X. and Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Statist. 38 808-835. 10.1214/09-AOS716 MathSciNet: MR2604697 · Zbl 1183.62095
[23] Chen, L.H.Y. and Shao, Q.-M. (2004). Normal approximation under local dependence. Ann. Probab. 32 1985-2028. 10.1214/009117904000000450 MathSciNet: MR2073183 · Zbl 1048.60020
[24] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786-2819. 10.1214/13-AOS1161 MathSciNet: MR3161448 · Zbl 1292.62030
[25] Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related Fields 162 47-70. 10.1007/s00440-014-0565-9 MathSciNet: MR3350040 · Zbl 1319.60072
[26] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45 2309-2352. 10.1214/16-AOP1113 MathSciNet: MR3693963 · Zbl 1377.60040
[27] Chernozhukov, V., Chetverikov, D. and Kato, K. (2019). Inference on causal and structural parameters using many moment inequalities. Rev. Econ. Stud. 86 1867-1900. 10.1093/restud/rdy065 MathSciNet: MR4009488 · Zbl 07613855
[28] Chernozhuokov, V., Chetverikov, D. and Koike, Y. (2023). Nearly optimal central limit theorem and bootstrap approximations in high dimensions. Ann. Appl. Probab. To appear. · Zbl 1539.62057
[29] Chernozhuokov, V., Chetverikov, D., Kato, K. and Koike, Y. (2022a). Improved central limit theorem and bootstrap approximations in high dimensions. Ann. Statist. 50 2562-2586. 10.1214/22-aos2193 MathSciNet: MR4500619 · Zbl 1539.62057
[30] Das, D. and Lahiri, S. (2021). Central Limit Theorem in high dimensions: The optimal bound on dimension growth rate. Trans. Amer. Math. Soc. 374 6991-7009. 10.1090/tran/8459 MathSciNet: MR4315595 · Zbl 1473.60055
[31] Davydov, J.A. (1968). The convergence of distributions which are generated by stationary random processes. Theory Probab. Appl. 13 691-696. · Zbl 0181.44101
[32] den Haan, W.J. and Levin, A.T. (1997). A practitioner’s guide to robust covariance matrix estimation. In Robust Inference. Handbook of Statist. 15 299-342. Amsterdam: North-Holland. 10.1016/S0169-7161(97)15014-3 MathSciNet: MR1492717 · Zbl 0908.62030
[33] Deng, H. (2020). Slightly conservative bootstrap for maxima of sums. Available at arXiv:2007.15877.
[34] Deng, H. and Zhang, C.-H. (2020). Beyond Gaussian approximation: Bootstrap for maxima of sums of independent random vectors. Ann. Statist. 48 3643-3671. 10.1214/20-AOS1946 MathSciNet: MR4185823 · Zbl 1461.62042
[35] Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Stat. 30 63-82. zbMATH: 0790.60037 MathSciNet: MR1262892 · Zbl 0790.60037
[36] Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Series in Statistics. New York: Springer. 10.1007/b97702 MathSciNet: MR1964455 · Zbl 1014.62103
[37] Fang, X. and Koike, Y. (2021). High-dimensional central limit theorems by Stein’s method. Ann. Appl. Probab. 31 1660-1686. 10.1214/20-aap1629 MathSciNet: MR4312842 · Zbl 1476.60049
[38] Hafner, C.M. and Preminger, A. (2009). On asymptotic theory for multivariate GARCH models. J. Multivariate Anal. 100 2044-2054. 10.1016/j.jmva.2009.03.011 MathSciNet: MR2543085 · Zbl 1170.62063
[39] Hoeffding, W. and Robbins, H. (1948). The central limit theorem for dependent random variables. Duke Math. J. 15 773-780. Digital Object Identifier: 10.1215/S0012-7094-48-01568-3 Google Scholar: Lookup Link Euclid: euclid.dmj/1077475030 zbMATH: 0031.36701 MathSciNet: MR26771 · Zbl 0031.36701 · doi:10.1215/S0012-7094-48-01568-3
[40] Hörmann, S. (2009). Berry-Esseen bounds for econometric time series. ALEA Lat. Am. J. Probab. Math. Stat. 6 377-397. MathSciNet: MR2557877 · Zbl 1276.60024
[41] Jirak, M. (2016). Berry-Esseen theorems under weak dependence. Ann. Probab. 44 2024-2063. 10.1214/15-AOP1017 zbMATH: 1347.60011 MathSciNet: MR3502600 · Zbl 1347.60011
[42] Kiefer, N.M., Vogelsang, T.J. and Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica 68 695-714. 10.1111/1468-0262.00128 MathSciNet: MR1769382 · Zbl 1015.62089
[43] Koike, Y. (2021). Notes on the dimension dependence in high-dimensional central limit theorems for hyperrectangles. Jpn. J. Stat. Data Sci. 4 257-297. 10.1007/s42081-020-00096-7 MathSciNet: MR4273258 · Zbl 1477.60048
[44] Koike, Y. (2023). High-dimensional central limit theorems for homogeneous sums. J. Theoret. Probab. To appear. 10.1007/s10959-022-01156-2 · Zbl 1514.60036
[45] Kuchibhotla, A.K. and Rinaldo, A. (2020). High-dimensional CLT for sums of non-degenerate random vectors: \( n^{- 1 / 2}\)-rate. Available at arXiv:2009.13673.
[46] Lahiri, S.N. (2003). Resampling Methods for Dependent Data. Springer Series in Statistics. New York: Springer. 10.1007/978-1-4757-3803-2 MathSciNet: MR2001447 · Zbl 1028.62002
[47] Lopes, M.E. (2022). Central limit theorem and bootstrap approximation in high dimensions: Near \(1 / \sqrt{ n}\) rates via implicit smoothing. Ann. Statist. 50 2492-2513. 10.1214/22-aos2184 MathSciNet: MR4505371 · Zbl 1539.62058
[48] Lopes, M.E., Lin, Z. and Müller, H.-G. (2020). Bootstrapping max statistics in high dimensions: Near-parametric rates under weak variance decay and application to functional and multinomial data. Ann. Statist. 48 1214-1229. 10.1214/19-AOS1844 MathSciNet: MR4102694 · Zbl 1464.62266
[49] Petrov, V.V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford Studies in Probability 4. Oxford University Press, New York: The Clarendon Press. MathSciNet: MR1353441 · Zbl 0826.60001
[50] Raič, M. (2019). A multivariate Berry-Esseen theorem with explicit constants. Bernoulli 25 2824-2853. 10.3150/18-BEJ1072 MathSciNet: MR4003566 · Zbl 1428.62205
[51] Rio, E. (2009). Moment inequalities for sums of dependent random variables under projective conditions. J. Theoret. Probab. 22 146-163. 10.1007/s10959-008-0155-9 MathSciNet: MR2472010 · Zbl 1160.60312
[52] Rio, E. (2017). Asymptotic Theory of Weakly Dependent Random Processes. Probability Theory and Stochastic Modelling 80. Berlin: Springer. 10.1007/978-3-662-54323-8 MathSciNet: MR3642873 · Zbl 1378.60003
[53] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 43-47. 10.1073/pnas.42.1.43 MathSciNet: MR0074711 · Zbl 0070.13804
[54] Saulis, L. and Statulevičius, V.A. (1991). Limit Theorems for Large Deviations. Netherlands: Springer. · Zbl 0810.60024
[55] Song, Y., Chen, X. and Kato, K. (2019). Approximating high-dimensional infinite-order \(U\)-statistics: Statistical and computational guarantees. Electron. J. Stat. 13 4794-4848. 10.1214/19-EJS1643 MathSciNet: MR4038726 · Zbl 1434.62071
[56] Sunklodas, Ĭ. (1984). The rate of convergence in the central limit theorem for strongly mixing random variables. Lith. Math. J. 24 182-190. · Zbl 0558.60023
[57] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press. 10.1017/CBO9780511802256 MathSciNet: MR1652247 · Zbl 0910.62001
[58] Wainwright, M.J. (2019). High-Dimensional Statistics: A Non-asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics 48. Cambridge: Cambridge Univ. Press. 10.1017/9781108627771 MathSciNet: MR3967104 · Zbl 1457.62011
[59] Wong, K.C., Li, Z. and Tewari, A. (2020). Lasso guarantees for \(β\)-mixing heavy-tailed time series. Ann. Statist. 48 1124-1142. 10.1214/19-AOS1840 MathSciNet: MR4102690 · Zbl 1450.62117
[60] Wu, W.B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150-14154. 10.1073/pnas.0506715102 MathSciNet: MR2172215 · Zbl 1135.62075
[61] Wu, W.B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35 2294-2320. 10.1214/009117907000000060 MathSciNet: MR2353389 · Zbl 1166.60307
[62] Wu, W.B. and Shao, X. (2004). Limit theorems for iterated random functions. J. Appl. Probab. 41 425-436. 10.1239/jap/1082999076 MathSciNet: MR2052582 · Zbl 1046.60024
[63] Wu, W.-B. and Wu, Y.N. (2016). Performance bounds for parameter estimates of high-dimensional linear models with correlated errors. Electron. J. Stat. 10 352-379. 10.1214/16-EJS1108 MathSciNet: MR3466186 · Zbl 1333.62172
[64] Yu, M. and Chen, X. (2021). Finite sample change point inference and identification for high-dimensional mean vectors. J. R. Stat. Soc. Ser. B. Stat. Methodol. 83 247-270. 10.1111/rssb.12406 MathSciNet: MR4250275 · Zbl 07555264
[65] Yu, M. and Chen, X. (2022). A robust bootstrap change point test for high-dimensional location parameter. Electron. J. Stat. 16 1096-1152. 10.1214/21-ejs1915 MathSciNet: MR4377134 · Zbl 1493.62148
[66] Zhang, X. (2015). Testing high dimensional mean under sparsity. Available at arXiv:1509.08444.
[67] Zhang, X. and Cheng, G. (2018). Gaussian approximation for high dimensional vector under physical dependence. Bernoulli 24 2640-2675. 10.3150/17-BEJ939 MathSciNet: MR3779697 · Zbl 1419.62257
[68] Zhang, D. and Wu, W.B. (2017). Gaussian approximation for high dimensional time series. Ann. Statist. 45 1895-1919. 10.1214/16-AOS1512 MathSciNet: MR3718156 · Zbl 1381.62254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.