×

Notes on the dimension dependence in high-dimensional central limit theorems for hyperrectangles. (English) Zbl 1477.60048

Summary: Let \(X_1,\ldots ,X_n\) be independent centered random vectors in \({\mathbb{R}}^d\). This paper shows that, even when \(d\) may grow with \(n\), the probability \(P(n^{-1/2}\sum_{i=1}^nX_i\in A)\) can be approximated by its Gaussian analog uniformly in hyperrectangles \(A\) in \({\mathbb{R}}^d\) as \(n\rightarrow \infty\) under appropriate moment assumptions, as long as \((\log d)^5/n\rightarrow 0\). This improves a result of V. Chernozhukov et al. [Ann. Probab. 45, No. 4, 2309–2352 (2017; Zbl 1377.60040)] in terms of the dimension growth condition. When \(n^{-1/2}\sum_{i=1}^nX_i\) has a common factor across the components, this condition can be further improved to \((\log d)^3/n\rightarrow 0\). The corresponding bootstrap approximation results are also developed. These results serve as a theoretical foundation of simultaneous inference for high-dimensional models.

MSC:

60F05 Central limit and other weak theorems
62E17 Approximations to statistical distributions (nonasymptotic)

Citations:

Zbl 1377.60040

References:

[1] Belloni, A., Chernozhukov, V., Chetverikov, D., Hansen, C., & Kato, K. (2018). High-dimensional econometrics and regularized GMM, working paper. Retrieved from arXiv:1806.01888.
[2] Belloni, A.; Chernozhukov, V.; Kato, K., Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems, Biometrika, 102, 1, 77-94 (2015) · Zbl 1345.62049 · doi:10.1093/biomet/asu056
[3] Belloni, A., & Oliveira, R.I. (2018). A high dimensional central limit theorem for martingales, with applications to context tree models, working paper. arXiv:1809.02741.
[4] Bentkus, V., A Lyapunov-type bound in \({\mathbf{R}}^d\), Theory of Probability & Its Applications, 49, 2, 311-323 (2005) · Zbl 1090.60019 · doi:10.1137/S0040585X97981123
[5] Bonis, T. (2020). Stein’s method for normal approximation in Wasserstein distances with application to the multivariate Central Limit Theorem. Probability Theory and Related Fields (forthcoming). Retrieved from arXiv:1905.13615. · Zbl 1456.60059
[6] Boucheron, S.; Lugosi, G.; Massart, P., Concentration inequalities: A nonasymptotic theory of independence (2013), Oxford: Oxford University Press, Oxford · Zbl 1337.60003 · doi:10.1093/acprof:oso/9780199535255.001.0001
[7] Bühlmann, P.; van de Geer, S., Statistics for high-dimensional data (2011), New York: Springer, New York · Zbl 1273.62015 · doi:10.1007/978-3-642-20192-9
[8] Chen, X., Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications, The Annals of Statistics, 46, 2, 642-678 (2018) · Zbl 1396.62019
[9] Chernozhukov, V.; Chetverikov, D.; Kato, K., Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors, The Annals of Statistics, 41, 6, 2786-2819 (2013) · Zbl 1292.62030 · doi:10.1214/13-AOS1161
[10] Chernozhukov, V.; Chetverikov, D.; Kato, K., Gaussian approximation of suprema of empirical processes, The Annals of Statistics, 42, 4, 1564-1597 (2014) · Zbl 1317.60038 · doi:10.1214/14-AOS1230
[11] Chernozhukov, V.; Chetverikov, D.; Kato, K., Comparison and anti-concentration bounds for maxima of Gaussian random vectors, Probability Theory and Related Fields, 162, 47-70 (2015) · Zbl 1319.60072 · doi:10.1007/s00440-014-0565-9
[12] Chernozhukov, V.; Chetverikov, D.; Kato, K., Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings, Stochastic Processes and their Applications, 126, 3632-3651 (2016) · Zbl 1351.60035 · doi:10.1016/j.spa.2016.04.009
[13] Chernozhukov, V.; Chetverikov, D.; Kato, K., Central limit theorems and bootstrap in high dimensions, Annals of Probability, 45, 4, 2309-2353 (2017) · Zbl 1377.60040 · doi:10.1214/16-AOP1113
[14] Chernozhukov, V., Chetverikov, D., & Kato, K. (2017b). Detailed proof of Nazarov’s inequality, unpublished paper. Retrieved from arXiv:1711.10696.
[15] Courtade, TA; Fathi, M.; Pananjady, A., Existence of Stein kernels under a spectral gap, and discrepancy bounds, Annale Institut Henri Poincaré, Probabilités et Statistiques, 55, 2, 777-790 (2019) · Zbl 1466.60006
[16] Deng, H., & Zhang, C.H. (2020). Beyond Gaussian approximation: Bootstrap for maxima of sums of independent random vectors. Annals of Statistics (forthcoming). Retrieved from arXiv:1705.09528v2. · Zbl 1461.62042
[17] Eldan, R.; Mikulincer, D.; Zhai, A., The CLT in high dimensions: Quantitative bounds via martingale embedding, Annals of Probability, 48, 5, 2494-2524 (2020) · Zbl 1468.60031 · doi:10.1214/20-AOP1429
[18] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling extremal events (1997), New York: Springer, New York · Zbl 0873.62116 · doi:10.1007/978-3-642-33483-2
[19] Fathi, M., Stein kernels and moment maps, Annals of Probability, 47, 4, 2172-2185 (2019) · Zbl 1466.60044 · doi:10.1214/18-AOP1305
[20] Gradshteyn, I.; Ryzhik, I., Table of integrals, series, and products (2007), Amsterdam: Elsevier, Amsterdam · Zbl 1208.65001
[21] Hall, P.; Quirós, A.; Chamizo, F., Some contemporary problems in statistical science, Madrid intelligencer, 38-41 (2006), New York: Springer, New York
[22] Koike, Y., Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data, Annals of Statistics, 47, 3, 1663-1687 (2019) · Zbl 1451.60053 · doi:10.1214/18-AOS1731
[23] Koike, Y. (2019b). High-dimensional central limit theorems for homogeneous sums, working paper. Retrieved from arXiv:1902.03809.
[24] Kuchibhotla, A.K., Mukherjee, S., & Banerjee, D. (2019). High-dimensional CLT: Improvements, non-uniform extensions and large deviations. Bernoulli (forthcoming). Retrieved from arXiv:1806.06153v3. · Zbl 1475.60054
[25] Le Cam, L., Asymptotic methods in statistical decision theory (1986), New York: Springer, New York · Zbl 0605.62002 · doi:10.1007/978-1-4612-4946-7
[26] Ley, C.; Reinert, G.; Swan, Y., Stein’s method for comparison of univariate distributions, Probability Surveys, 14, 1-52 (2017) · Zbl 1406.60010 · doi:10.1214/16-PS278
[27] Lopes, ME; Lin, Z.; Müller, HG, Bootstrapping max statistics in high dimensions: Near-parametric rates under weak variance decay and application to functional and multinomial data, Annals of Statistics, 48, 2, 1214-1229 (2020) · Zbl 1464.62266 · doi:10.1214/19-AOS1844
[28] Petrov, VV, Sums of independent random variables (1975), New York: Springer, New York · Zbl 0322.60042 · doi:10.1007/978-3-642-65809-9
[29] van der Vaart, AW, Asymptotic statistics (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0943.62002 · doi:10.1017/CBO9780511802256
[30] van der Vaart, AW; Wellner, JA, Weak convergence and empirical processes (1996), New York: Springer, New York · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[31] Zhai, A., A high-dimensional CLT in \({\cal{W}}_2\) distance with near optimal convergence rate, Probability Theory and Related Fields, 170, 3-4, 821-845 (2018) · Zbl 1429.60031 · doi:10.1007/s00440-017-0771-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.