×

Theories and applications associated with biquaternion linear canonical transform. (English) Zbl 1530.42008


MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
11R52 Quaternion and other division algebras: arithmetic, zeta functions
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] H.Jiang, S. F.Yuan, and Y. Z.Cao, Least squares hermitian problem of a kind of quaternion tensor equation, Math. Methods Appl. Sci.45 (2022), no. 15, 8948-8963. · Zbl 1527.15035
[2] B.Xu, L. Z.Wang, S. X.Li, and J.Zhang, A novel calibration method of SINS/DVL integration navigation system based on quaternion, IEEE Sens. J.20 (2020), no. 16, 9567-9580.
[3] X. H.Xu, Q.Xu, J. B.Yang, H. B.Xue, and Y. H.Xu, Further research on exponential stability for quaternion‐valued neural networks with mixed delays, Neurocomputing400 (2020), 186-205.
[4] K. I.Kou, J.Ou, and J.Morais, Uncertainty principles associated with quaternionic linear canonical transforms, Math. Methods Appl. Sci.39 (2016), no. 10, 2722-2736. · Zbl 1407.94037
[5] M.Bahri and S. A. A.Karim, A variation on inequality for quaternion Fourier transform, modified convolution and correlation theorems for general quaternion linear canonical transform, Symmetry‐Basel14 (2022), no. 7, 1-17.
[6] K.Hleili, A variation on uncertainty principles for quaternion linear canonical transform, Adv. Appl. Clifford Algebr.31 (2021), no. 46, 1-3. · Zbl 1470.42011
[7] L. P.Chen, K. I.Kou, and M. S.Liu, Pitt’s inequality and the uncertainty principle associated with the quaternion linear canonical transform, J. Math. Anal. Appl.423 (2015), no. 1, 681-700. · Zbl 1425.42012
[8] M.Bahri and R.Ashino, Two‐dimensional quaternion linear canonical transform: Properties, convolution, correlation, and uncertainty principle, J. Math.2019 (2019), 1-17. · Zbl 1454.42007
[9] Z. W.Li, W. B.Gao, and B. Z.Li, A new kind of convolution, correlation and product theorems related to quaternion linear canonical transform, Signal Image Video Process.15 (2021), no. 1, 103-110.
[10] X. X.Hu, D.Cheng, and K. I.Kou, Convolution theorems associated with quaternion linear canonical transform and applications, Signal Process.202 (2023), 1-17.
[11] M.Bahri and R.Ashino, Simplified proof of uncertainty principle for quaternion linear canonical transform, Abstr. Appl. Anal.2016 (2016), 1-11. · Zbl 1470.42013
[12] K. I.Kou, J.Ou, and J.Morais, On uncertainty principle for quaternionic linear canonical transform, Abstr. Appl. Anal.2013 (2013), 1-14. · Zbl 1275.42012
[13] W. B.Gao and B. Z.Li, Quaternion windowed linear canonical transform of two‐dimensional signals, Adv. Appl. Clifford Algebras30 (2020), no. 16, 1-18. · Zbl 1435.30140
[14] W. B.Gao and B. Z.Li, Uncertainty principle for the two‐sided quaternion windowed linear canonical transform, Circ. Syst. Signal Process.41 (2022), no. 3, 1324-1348. · Zbl 1509.43005
[15] X. Y.Zhu and S. Z.Zheng, Uncertainty principles for the two‐sided quaternion linear canonical transform, Circ. Syst. Signal Process.39 (2020), no. 9, 4436-4458. · Zbl 1485.94032
[16] M.Kundu and A.Prasad, Uncertainty principles associated with quaternion linear canonical transform and their estimates, Math. Methods Appl. Sci.45 (2022), no. 8, 4772-4790. · Zbl 1535.42007
[17] A.Achak, A.Abouelaz, R.Daher, and N.Safouane, Uncertainty principles for the quaternion linear canonical transform, Adv. Appl. Clifford Algebr.29 (2019), no. 99, 1-19. · Zbl 1426.42004
[18] X. Y.Zhu and S. Z.Zheng, On uncertainty principle for the two‐sided quaternion linear canonical transform, J. Pseudodiffer Oper. Appl.12 (2021), no. 1, 1-25. · Zbl 1465.42013
[19] Z. W.Li, B. Z.Li, and M.Qi, Two‐dimensional quaternion linear canonical series for color images, Signal Process. Image Commun.101 (2022), 1-10.
[20] M.Bahri, Quaternion linear canonical transform application, Glob. J. Pure Appl. Math.11 (2015), no. 1, 19-24.
[21] W. R.Hamilton, On the geometrical interpretation of some results obtained by calculation with biquaternions5 (1853), 388-390.
[22] S.Said, N. L.Bihan, and S. J.Sangwine, Fast complexified quaternion fourier transform, IEEE Trans. Signal Process.56 (2008), no. 4, 1522-1531. · Zbl 1390.94389
[23] J. P.Ward, Quaternions and Cayley numbers: Algebra and applications of mathematics and its applications, Kluwer, Dordrecht, 1997. · Zbl 0877.15031
[24] M.Bekar and Y.Yayli, Involutions of complexified quaternions and split quaternions, Adv. Appl. Clifford Algebr.23 (2013), no. 2, 283-299. · Zbl 1272.11124
[25] S. J.Sangwine, T. A.Ell, and N. L.Bihan, Fundamental representations and algebraic properties of biquaternions or complexified quaternions, Adv. Appl. Clifford Algebr.21 (2011), no. 3, 607-636. · Zbl 1272.15016
[26] S. J.Sangwine, Biquaternion (complexified quaternion) roots of −1, Adv. Appl. Clifford Alg.16 (2006), no. 1, 63-68. · Zbl 1107.30038
[27] W.Bi, Z. F.Cai, and K. I.Kou, Biquaternion Z transform, 2021. arXiv:2108.02975. 2021.
[28] T. A.Ell, Quaternion‐fourier transforms for analysis of two‐dimensional linear time‐invariant partial differential systems, IEEE Conference on Decision Control IEEE, 1993.
[29] F. A.Shah and A. A.Teali, Two‐sided quaternion wave‐packet transform and the quantitative uncertainty principles, Filomat36 (2022), no. 2, 449-467.
[30] S. C.Pei, J. J.Ding, and J. H.Chang, Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2‐D complex FFT, IEEE Trans. Signal Process.49 (2001), no. 1, 2783-2797. · Zbl 1369.65190
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.