×

A variation on uncertainty principles for quaternion linear canonical transform. (English) Zbl 1470.42011

Summary: In this paper we prove Clarkson-type and Nash-type inequalities in the (right-sided) Quaternion Linear Canonical transform (QLCT) for \(L^p\)-functions. Next, we show Heisenberg-type inequalities and Matolcsi-Szücs-type inequality for the QLCT. Finally, we deduce local-type uncertainty inequalities for the Quaternion Linear Canonical transform.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A35 Convolution as an integral transform
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
Full Text: DOI

References:

[1] Abe, S.; Sheridan, JT, Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation, Opt. Lett., 19, 1801-1803 (1994) · doi:10.1364/OL.19.001801
[2] Achak, A.; Abouelaz, A.; Daher, R.; Safouane, N., Uncertainty principles for the quaternion linear canonical transform, Adv. Appl. Clifford Algebras., 29, 99, 1-19 (2019) · Zbl 1426.42004
[3] Bahri, M.; Ashino, R., A simplified proof of uncertainty principle for quaternion linear canonical transform, Abstr. Appl. Anal. (2016) · Zbl 1470.42013 · doi:10.1155/2016/5874930
[4] Bahri, M.; Ashino, R., A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transforms, Abstr. Appl. Anal. (2017) · Zbl 1470.42062 · doi:10.1155/2017/3795120
[5] Bahri, M.; Resnawati, MS, A version of uncertainty principle for quaternion linear canonical transform, Abstr. Appl. Anal. (2018) · Zbl 1470.42016 · doi:10.1155/2018/8732457
[6] Bahri, M.; Hitzer, ES; Hayashi, A.; Ashino, R., An uncertainty principle for quaternion Fourier transform, Comput. Math. Appl., 56, 9, 2398-2410 (2008) · Zbl 1165.42310 · doi:10.1016/j.camwa.2008.05.032
[7] Barshan, B.; Kutay, M.; Ozaktas, H., Optimal filtering with linear canonical transformations, Opt. Commun., 135, 32-36 (1997) · doi:10.1016/S0030-4018(96)00598-6
[8] Bernardo, LM, ABCD matrix formalism of fractional Fourier optics, Opt. Eng. (Bellingham), 35, 732-740 (1996) · doi:10.1117/1.600641
[9] Collins, SAJ, Lens-system diffraction integral written in terms of matrix optics, J. Opt. Soc. Am., 60, 9, 1168-1177 (1970) · doi:10.1364/JOSA.60.001168
[10] Cowling, M.; Price, JF, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal., 15, 151-165 (1984) · doi:10.1137/0515012
[11] El Haoui, Y.; Hitzer, E., Generalized uncertainty principles associated with the quaternionic offset linear canonical transform, Complex Var. Elliptic Equ. (2021) · Zbl 1494.42008 · doi:10.1080/17476933.2021.1916919
[12] Ghazouani, S.; Soltani, EA; Fitouhi, A., A unified class of integral transforms related to the Dunkl transform, J. Math. Anal. Appl., 449, 2, 1797-1849 (2017) · Zbl 1359.44002 · doi:10.1016/j.jmaa.2016.12.054
[13] Ghobber, S., Uncertainty principles involving \(L^1\)-norms for the Dunkl transform, Int. Trans. Spec. Funct., 24, 6, 491-501 (2013) · Zbl 1275.42011 · doi:10.1080/10652469.2012.712533
[14] Ghobber, S., Variations on uncertainty principles for integral operators, Appl. Anal., 93, 5, 1057-1072 (2014) · Zbl 1290.42026 · doi:10.1080/00036811.2013.816685
[15] Ghobber, S.; Jaming, P., Uncertainty principles for integral operators, Stud. Math., 220, 3, 197-220 (2014) · Zbl 1297.42018 · doi:10.4064/sm220-3-1
[16] Hitzer, E., Quaternion Fourier transform on quaternion fields and generalizations, Adv. Appl. Clifford Algebra, 17, 3, 497-517 (2007) · Zbl 1143.42006 · doi:10.1007/s00006-007-0037-8
[17] Hleili, K., Uncertainty principles for spherical mean \(L^2\)-multiplier operators, J. Pseudodiffer. Oper. Appl., 9, 573-587 (2018) · Zbl 1400.43001 · doi:10.1007/s11868-017-0197-9
[18] Hleili, K., Continuous wavelet transform and uncertainty principle related to the Weinstein operator, Integral Transf. Spec. Funct., 29, 4, 252-268 (2018) · doi:10.1080/10652469.2018.1428581
[19] Hleili, K., Some results for the windowed Fourier transform related to the spherical mean operator, Acta Math. Vietnam., 46, 179-201 (2021) · Zbl 1467.42017 · doi:10.1007/s40306-020-00382-2
[20] Hu, B.; Zhou, Y.; Lie, LD; Zhang, JY, Polar linear canonical transforming quaternion domain, J. Inf. Hiding Multimed. Signal Process., 6, 6, 1185-1193 (2015)
[21] James, DFV; Agarwal, GS, The generalized Fresnel transform and its application to optics, Opt. Commun., 126, 207-212 (1996) · doi:10.1016/0030-4018(95)00708-3
[22] Kerr, FH, A fractional power theory for Hankel transforms in \(L^2(\mathbb{R}_+)\), J. Math. Anal. Appl., 158, 1, 114-123 (1991) · Zbl 0735.44002 · doi:10.1016/0022-247X(91)90271-Z
[23] Kou, KI; Morais, J., Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem, Appl. Math. Comput., 247, 15, 675-688 (2014) · Zbl 1338.43005
[24] Kou, KI; Ou, JY; Morais, J., On uncertainty principle for quaternionic linear canonical transform, Abstr. Appl. Anal., 2013, 725952 (2013) · Zbl 1275.42012 · doi:10.1155/2013/725952
[25] Laeng, E.; Morpurgo, C., An uncertainty inequality involving \(L^1\)-norms, Proc. Am. Math. Soc., 127, 12, 3565-3572 (1999) · Zbl 0945.42005 · doi:10.1090/S0002-9939-99-05022-4
[26] Lian, P., Uncertainty principle for the quaternion Fourier transform, J. Math. Anal. Appl., 467, 2, 1258-1269 (2018) · Zbl 1431.42020 · doi:10.1016/j.jmaa.2018.08.002
[27] Li-Ping, C.; Kit Ian Kou, K.; Ming-Sheng, L., Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform, J. Math. Anal. Appl., 423, 681-700 (2015) · Zbl 1425.42012 · doi:10.1016/j.jmaa.2014.10.003
[28] Morpurgo, C., Extremals of some uncertainty inequalities, Bull. Lond. Math. Soc., 33, 1, 52-58 (2001) · Zbl 1041.42007 · doi:10.1112/blms/33.1.52
[29] Moshinsky, M.; Quesne, C., Linear canonical transformations and their unitary representations, J. Math. Phys., 12, 8, 1772-1780 (1971) · Zbl 0247.20051 · doi:10.1063/1.1665805
[30] Ozaktas, H.; Zalevsky, Z.; Kutay, M., The Fractional Fourier Transform with Applications in Optics and Signal Processing (2001), New York: Wiley, New York
[31] Pei, S.; Ding, J., Eigenfunctions of linear canonical transform, IEEE Trans. Signal Process., 50, 11-26 (2002) · Zbl 1369.94259 · doi:10.1109/78.972478
[32] Price, JF, Inequalities and local uncertainty principles, J. Math. Phys., 24, 1711-1714 (1983) · Zbl 0513.60100 · doi:10.1063/1.525916
[33] Soltani, F., An \(L^p\) Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform, Konuralp J. Math. (2), 1, 1-6 (2014) · Zbl 1306.42017
[34] Soltani, F., \(L^p\) local uncertainty principle for the Dunkl transform, Konuralp J. Math., 3, 2, 100-109 (2015) · Zbl 1336.42009
[35] Wolf, KB, Canonical transforms II. Complex radial transforms, J. Math. Phys., 15, 1295-1301 (1974) · Zbl 0292.44005 · doi:10.1063/1.1666811
[36] Yang, Y.; Kou, KI, Uncertainty principles for hypercomplex signals in the linear canonical transform domains, Signal Process., 95, 67-75 (2014) · doi:10.1016/j.sigpro.2013.08.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.