×

Maximal speed of quantum propagation for the Hartree equation. (English) Zbl 1529.35459

Summary: We prove maximal speed estimates for nonlinear quantum propagation in the context of the Hartree equation. More precisely, under some regularity and integrability assumptions on the pair (convolution) potential, we construct a set of energy and space localized initial conditions such that, up to time-decaying tails, solutions starting in this set stay within the light cone of the corresponding initial datum. We quantify precisely the light cone speed, and hence the speed of nonlinear propagation, in terms of the momentum of the initial state.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q40 PDEs in connection with quantum mechanics
81V73 Bosonic systems in quantum theory
81V70 Many-body theory; quantum Hall effect
35B65 Smoothness and regularity of solutions to PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs

References:

[1] Sigal, I. M.; Soffer, A., Local decay and propagation estimates for time-dependent and time-independent Hamiltonians (1988)
[2] Sigal, I. M.; Soffer, A., Long-range many-body scattering, Invent Math, 99, 1, 115-143 (1990) · Zbl 0702.35197 · doi:10.1007/BF01234413
[3] Arbunich, J.; Pusateri, F.; Sigal, I. M.; Soffer, A., Maximal velocity of propagation, Lett. Math. Phys, 111, 3, 1-16 (2021) · Zbl 1475.35301 · doi:10.1007/s11005-021-01397-y
[4] Herbst, I.; Skibsted, E., Free channel Fourier transform in the long-range N-body problem, J. Anal. Math, 65, 1, 297-332 (1995) · Zbl 0866.70008 · doi:10.1007/BF02788775
[5] Skibsted, E., Propagation estimates for N-body Schrödinger operators, Commun.Math. Phys, 142, 1, 67-98 (1991) · Zbl 0760.35035 · doi:10.1007/BF02099172
[6] Bony, J.-F.; Faupin, J.; Sigal, I. M., Maximal velocity of photons in non-relativistic QED, Adv, Math, 231, 3054-3078 (2012) · Zbl 1256.81113
[7] Faupin, J.; Lemm, M., Sigal Maximal speed for macroscopic particle transport in the Bose-Hubbard model, Phys. Rev. Lett., 128, 15, arXiv:2110.04313 (2022)
[8] Faupin, J.; Lemm, M.; Sigal, I. M., On Lieb-Robinson for the Bose-Hubbard model, Commun. Math. Phys, 394, 3, 1011-1037 (2022) · Zbl 1502.81071 · doi:10.1007/s00220-022-04416-8
[9] d’Ancona, P.; Nicola, F., Sharp L^p estimates for Schrödinger groups · Zbl 1353.42009
[10] Davies, E. B., Spectral Theory and Differential Operators (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0893.47004
[11] Finco, D.; Yajima, K., The L^p boundedness of wave operators for Schrödinger operators with threshold singularities. II. even-dimensional case, J. Math. Sci. Uni. Tokyo., 13, 3, 277-346 (2006) · Zbl 1142.35060
[12] Germain, P.; Hani, Z.; Walsh, S., Nonlinear resonances with a potential: multilinear estimates and an application to NLS, Int. Math. Res. Not, 18, 8484-8544 (2015) · Zbl 1326.35345
[13] Jensen, A.; Nakamura, S., Mapping properties of functions of Schrödinger operators between L^p-spaces and Besov Spaces, Advanced Studies in Pure Mathematics, 23, Spectral and Scattering Theory and Applications, 187-209 (1994) · Zbl 0815.47012
[14] Nakamura, S., L^p-estimates for Schrödinger operators, Proc. Indian Acad. Sci. (Math. Sci.), 104, 4, 653-666 (1994) · Zbl 0828.35113 · doi:10.1007/BF02830799
[15] Rodnianski, I.; Schlag, W., Time decay for solutions of Schrd¨inger equations with rough and time-dependent potentials, Invent. Math, 155, 3, 451-513 (2004) · Zbl 1063.35035 · doi:10.1007/s00222-003-0325-4
[16] Yajima, K., The \(####\)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan., 47, 3, 551-581 (1995) · Zbl 0837.35039
[17] Lieb, E. H.; Robinson, D. W., Statistical Mechanics, The finite group velocity of quantum spin systems, 425-431 (1972), Berlin: Springer, Berlin
[18] Cheneau, M.; Barmettler, P.; Poletti, D.; Endres, M.; Schauß, P.; Fukuhara, T.; Gross, C.; Bloch, I.; Kollath, C.; Kuhr, S., Light-cone-like spreading of correlations in a quantum many-body system, Nature., 481, 7382, 484-487 (2012) · doi:10.1038/nature10748
[19] Gogolin, C.; Eisert, J., Equilibration, thermalization, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys, 79, 5, 056001 (2016) · doi:10.1088/0034-4885/79/5/056001
[20] Nachtergaele, B.; Sims, R., Much ado about something: Why Lieb-Robinson bounds are useful
[21] Else, D. V.; Machado, F.; Nayak, C.; Yao, N. Y., Improved Lieb-Robinson bound for many-body Hamiltonians with power-law interactions, Phys. Rev. A, 101, 2, 022333 (2020) · doi:10.1103/PhysRevA.101.022333
[22] Foss-Feig, M.; Gong, Z.-X.; Clark, C. W.; Gorshkov, A. V., Nearly-linear light cones in long-range interacting quantum systems Phys, Phys. Rev. Lett, 114, 15, 157201 (2015) · doi:10.1103/PhysRevLett.114.157201
[23] Gebert, M.; Nachtergaele, B.; Reschke, J.; Sims, R., Lieb-Robinson bounds and strongly continuous dynamics for a class of many-body fermion systems in, Ann. Henri Poincaré., 21, 11, 3609-3637 (2020) · Zbl 1468.35161
[24] Kuwahara, T.; Saito, K., Lieb-Robinson bound and almost-linear light-cone in interacting boson systems, Phys. Rev. Lett, 127, 7, 070403 (2021) · doi:10.1103/PhysRevLett.127.070403
[25] Ivrii, V.; Sigal, I. M., Asymptotics of the ground state energies of large Coulomb systems, Annal. Math, 138, 2, 243-335 (1993) · Zbl 0789.35135 · doi:10.2307/2946613
[26] Matsuta, T.; Koma, T.; Nakamura, S., Improving the Lieb-Robinson bound for long-range interactions, Ann. Henri Poincaré, 18, 2, 519-528 (2017) · Zbl 1357.81167 · doi:10.1007/s00023-016-0526-1
[27] Nachtergaele, B.; Raz, H.; Schlein, B.; Sims, R., Lieb-Robinson Bounds for harmonic and anharmonic lattice systems, Commun. Math. Phys, 286, 3, 1073-1098 (2009) · Zbl 1196.82074 · doi:10.1007/s00220-008-0630-2
[28] Schuch, N.; Harrison, S. K.; Osborne, T. J.; Eisert, J., Information propagation for interacting-particle systems, Phys. Rev. A, 84, 3, 032309 (2011) · doi:10.1103/PhysRevA.84.032309
[29] Wang, Z.; Hazzard, K. R., Tightening the Lieb-Robinson Bound in Locally Interacting Systems, PRX Quantum., 1, 1, 010303 (2020) · doi:10.1103/PRXQuantum.1.010303
[30] Yin, C.; Lucas, A.
[31] Sigal, I. M., On long range scattering, Duke Math. J, 60, 2, 473-496 (1990) · Zbl 0725.35071 · doi:10.1215/S0012-7094-90-06019-3
[32] Benedikter, N.; Porta, M.; Schlein, B., Effective Evolution Equations from Quantum Dynamics, SpringerBriefs in Mathematical Physics, Vol.7 (2016), Berlin: Springer, Berlin · Zbl 1396.81003
[33] Pusateri, F.; Sigal, I. M., Long-time behaviour of time-dependent density functional theory arch, Arch Rational Mech Anal, 241, 1, 447-473 (2021) · Zbl 1467.82112 · doi:10.1007/s00205-021-01656-1
[34] Dietze, C.; C, Dispersive estimates for nonlinear Schrödinger equations with external potentials, J. Math. Phys, 62, 11, 111502 (2021) · Zbl 1490.35408 · doi:10.1063/5.0055911
[35] Cycon, H.; Froese, R.; Kirsch, W.; Simon, B., Texts and Monographs in Physics, Schrödinger Operators (1987), Berlin: Springer Verlag, Berlin · Zbl 0619.47005
[36] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, 1980 (1975), New York-London: Academic Press, New York-London · Zbl 0308.47002
[37] Cazenave, T. (2003). Semilinear Schrödinger Equations, Courant Lecture Notes, 10, AMS, CIMS · Zbl 1055.35003
[38] Beceanu, M., Structure for wave operators om, Trans. Am. J. Math., 136, 2, 255-308 (2014) · Zbl 1377.35209
[39] Beceanu, M.; Schlag, W., Structure formulas for wave operators under a small scaling invariant condition, J. Spectr. Theory, 9, 3, 967-990 (2019) · Zbl 1428.35254 · doi:10.4171/JST/268
[40] Schlag, W.; W, On pointwise decay of waves, J. Math. Phys, 62, 6, 061509 (2021) · Zbl 1467.81039 · doi:10.1063/5.0042767
[41] Dereziński, J.; Gérard, C., Scattering Theory of Classical and Quantum N-Particle Systems (1997), Berlin: Springer-Verlag, Berlin · Zbl 0899.47007
[42] Hunziker, W.; Sigal, I. M., Time-dependent scattering theory of n-body quantum systems, Rev. Math. Phys, 12, 8, 1033-1084 (2000) · Zbl 0978.47008 · doi:10.1142/S0129055X0000040X
[43] Hunziker, W.; Sigal, I. M.; Soffer, A., Minimal escape velocities, Comm. Partial Diff. Eqs., 24, 11-12, 2279-2295 (1999) · Zbl 0944.35014 · doi:10.1080/03605309908821502
[44] Helffer, B.; Sjöstrand, J.; Holden, H.; Jensen, A., Schrödinger Operators. Lecture Notes in Physics, 345, Equation de Schrödinger avec champ magnétique et équation de Harper (1989), Berlin: Springer Verlag, Berlin · Zbl 0699.35189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.