×

Free channel Fourier transform in the long-range \(N\)-body problem. (English) Zbl 0866.70008

Free channel generalized eigenfunctions are constructed using the Green’s function, similarly as in the two-body problem. The authors’ method allows to prove smoothness of the momenta as well as to describe the growth properties in configuration space of the generalized eigenfunctions. The authors actually span the free channel and identify the distorted Fourier transform. Finally, a class of long-range \(N\)-body operators with two-body potentials decaying faster than \(r^{-\varepsilon}\) for some \(\varepsilon > 0\) is considered.

MSC:

70F10 \(n\)-body problems
81V70 Many-body theory; quantum Hall effect
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI

References:

[1] [A] S. Agmon,Spectral theory of Schrödinger operators on Euclidean and non-Euclidean spaces, Comm. Pure Appl. Math. (1986), S3-S16. · Zbl 0601.47039
[2] Aizenman, M.; Simon, B., Brownian motion and Harnack’s inequality for Schrödinger operators, Comm. Pure Appl. Math., 35, 209-271 (1982) · Zbl 0459.60069 · doi:10.1002/cpa.3160350206
[3] [D1] J. Derezinski,Asymptotic completeness of long range N-body quantum systems, Ann. Math., to appear. · Zbl 0844.47005
[4] Derezinski, J., Algebraic approach to the N-body long range scattering, Rev. Math. Phys., 3, 1-62 (1991) · Zbl 0726.34071 · doi:10.1142/S0129055X91000023
[5] Froese, R.; Herbst, I., Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators, Commun. Math. Phys., 87, 429-447 (1982) · Zbl 0509.35061 · doi:10.1007/BF01206033
[6] Graf, G. M., Asymptotic completeness for N-body short-range quantum systems: A new proof, Commun. Math. Phys., 132, 73-101 (1990) · Zbl 0726.35096 · doi:10.1007/BF02278000
[7] Gérard, C., Sharp propagation estimates for N-particle systems, Duke Math. J., 67, 483-515 (1992) · Zbl 0760.35049 · doi:10.1215/S0012-7094-92-06719-6
[8] Herbst, I.; Skibsted, E., Time dependent approach to radiation conditions, Duke Math. J., 64, 119-147 (1991) · Zbl 0756.35063 · doi:10.1215/S0012-7094-91-06406-9
[9] Isozaki, H., Eikonal equations and spectral representations for long range Schrödinger Hamiltonians, J. Math. Kyoto Univ., 20, 243-261 (1980) · Zbl 0527.35022
[10] Isozaki, H., Asymptotic properties of generalized eigenfunctions for three body Schrödinger operators, Commun. Math. Phys., 153, 1-21 (1993) · Zbl 0774.35064 · doi:10.1007/BF02099038
[11] Isozaki, H.; Ikebe, T., A stationary approach to the existence and completeness of long-range wave operators, Integral Equations and Operator Theory, 5, 18-49 (1982) · Zbl 0496.35069 · doi:10.1007/BF01694028
[12] Jensen, A.; Kitada, H., Fundamental solutions and eigenfunction expansions for Schrödinger operators. II. Eigenfunction expansions, Math. Z., 199, 1-13 (1988) · Zbl 0641.35049 · doi:10.1007/BF01160205
[13] Jensen, A.; Mourre, E.; Perry, P., Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, 41, 207-225 (1984) · Zbl 0561.47007
[14] Kitada, H., Fourier integral operators with weighted symbols and micro-local resolvent estimates, J. Math. Soc. Japan, 39, 455-476 (1987) · Zbl 0638.35088
[15] Perry, P.; Sigal, I.; Simon, B., Spectral analysis of N-body Schrödinger operators, Ann. of Math., 114, 519-567 (1981) · Zbl 0477.35069 · doi:10.2307/1971301
[16] Sigal, I.; Soffer, A., The N-particle scattering problem: Asymptotic completeness for short range systems, Ann. Math., 125, 35-108 (1987) · Zbl 0646.47009
[17] [SS2] I. Sigal and A. Soffer,Asymptotic completeness of long range N-body scattering, 1991 preprint.
[18] Sigal, I., On long range scattering, Duke Math. J., 60, 473-496 (1990) · Zbl 0725.35071 · doi:10.1215/S0012-7094-90-06019-3
[19] Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc., 7, 447-526 (1982) · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[20] Skibsted, E., Propagation estimates for N-body Schrödinger operators, Commun. Math. Phys., 142, 67-98 (1992) · Zbl 0760.35035 · doi:10.1007/BF02099172
[21] Yajima, K., An abstract stationary approach to three-body scattering, J. Fac. Sci. Univ. Tokyo, Sec. IA, 25, 109-132 (1978) · Zbl 0398.35072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.