×

On index and monogenity of certain number fields defined by trinomials. (English) Zbl 1524.11190

Summary: Let \(K\) be a number field generated by a root \(\theta\) of a monic irreducible trinomial \(F(x)=x^n+ax^m+b\in\mathbb{Z}[x]\). In this paper, we study the problem of monogenity of \(K\). More precisely, we provide some explicit conditions on \(a\), \(b\), \(n\), and \(m\) for which \(K\) is not monogenic. As applications, we show that there are infinite families of non-monogenic number fields defined by trinomials of degree \(n=2^r\cdot 3^k\) with \(r\) and \(k\) two positive integers. We also give infinite families of non-monogenic sextic number fields defined by trinomials. Some illustrating examples are giving at the end of this paper.

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R21 Other number fields
11Y40 Algebraic number theory computations

References:

[1] AHMAD, S.—NAKAHARA, T.—HAMEED, A: On certain pure sextic fields related to a problem of Hasse, Int. J. Alg. Comput. 26(3) (2016), 577-583. · Zbl 1404.11124
[2] BEN YAKKOU, H.—EL FADIL, L.: On monogenity of certain number fields defined by trinomials, Funct. Approx. Comment. Math. 67(2) (2022), 199-221. · Zbl 1515.11108
[3] CARLITZ, L.: A note on common index divisors, Proc. Amer. Math. Soc. 3 (1952), 688-692. · Zbl 0047.27301
[4] COHEN, H.: A Course in Computational Algebraic Number Theory. GTM 138, Springer-Verlag Berlin Heidelberg, 1993. · Zbl 0786.11071
[5] DEDEKIND, R.: Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der hUheren Kongruenzen, Göttingen Abhandlungen 23 (1878), 1-23.
[6] DAVIS, C. T.—SPEARMAN, B. K.: The index of a quartic field defined by a trinomial x^4 + ax + b, J. Algebra Appl. 17(10) (2018), Art. ID 1850197. · Zbl 1437.11149
[7] EL FADIL, L.: On non monogenity of certain number fields defined by a trinomial x^6 + ax^3 + b, J. Number Theory 239 (2022), 489-500. · Zbl 1494.11084
[8] EL FADIL, L.: On common index divisor and monogenity of certain number fields defined by a trinomial x^5 + ax^2 + b, Commun. Algebra 50(7) (2022), 3102-3112. · Zbl 1512.11077
[9] EL FADIL, L.: On Newton polygon’s techniques and factorization of polynomial over Henselian valued fields, J. Algebra Appl. 19(10) (2020), Art. ID 2050188. · Zbl 1446.13004
[10] EL FADIL, L.: On power integral bases of certain pure number fields defined byx^3 7^s, Colloq. Math. 169 (2022), 307-317. · Zbl 1512.11078
[11] EL FADIL, L.—MONTES, J.—NART, E.: Newton polygons and p-integral bases of quartic number fields, J. Algebra Appl. 11(4) (2012), Art. ID 125073. · Zbl 1297.11134
[12] ENGSTROM, H. T.: On the common index divisors of an algebraic field, Trans. Amer. Math. Soc. 32(2) (1930), 223-237. · JFM 56.0885.04
[13] GAÁL, I.: An experiment on the monogenity of a family of trinomials, JP J. Algebra Number Theory Appl. 51(1) (2021), 97-111. · Zbl 1499.11318
[14] GAÁL, I.: Diophantine Equations and Power Integral Bases, Theory and Algorithm, 2nd edition, Boston, Birkhäuser, 2019. · Zbl 1465.11090
[15] GUARDIA, J.—MONTES, J.—NART, E.: Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364(1) (2012), 361-416. · Zbl 1252.11091
[16] HASSE, K.: Zahlentheorie, Akademie-Verlag, Berlin, 1963. · Zbl 1038.11500
[17] HASSE, K.: Theorie der Algebraischen Zahlen, Teubner Verlag, Leipzig, Berlin, 1908. · JFM 39.0269.01
[18] HASSE, K.: Arithmetische Untersuchungen ber Discriminanten und ihre Ausserwesentlichen Theiler, Dissertation, Univ. Berlin, 1884. · JFM 16.0063.01
[19] IBARRA, R.—LEMBECK, H.—OZASLAN, M.—SMITH, H.—STANGE, K. E.: Monogenic fields arising from trinomials, Involve 15(2) (2022), 299-317. · Zbl 1515.11105
[20] JAKHAR, A.—KUMAR, S.: On non-monogenic number fields defined by x^6 + ax + b, Canad. Math. Bull. 65(3) (2022), 788-794. · Zbl 1506.11135
[21] JAKHAR, A,—KHANDUJA, S.—SANGWAN, N.: Characterization of primes dividing the index of a trinomial, Int. J. Number Theory 13(10) (2017), 2505-2514. · Zbl 1431.11116
[22] JHORAR, B.—KHANDUJA, S.: On power basis of a class of algebraic number fields, Int. J. Number Theory 12(8) (2016), 2317-2321. · Zbl 1357.11106
[23] JONES, L.: Infinite families of non-monogenic trinomials, Acta Sci. Math. 87(1-2) (2021), 95-105. · Zbl 1488.11163
[24] JONES, L.: Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith. 197(2) (2021), 213-219. · Zbl 1465.11204
[25] JONES, L.—TRISTAN, PH.: Infinite families of monogenic trinomials and their Galois groups, Int. J. Math. 29(5) (2018), Art. ID 185039. · Zbl 1423.11181
[26] JONES, L.—WHITE, D.: Monogenic trinomials with non-squarefree discriminant, Int. J. Math. 32(13) (2021), Art. ID 215089. · Zbl 1478.11125
[27] MONTES, J.—NART, E.: On a theorem of Ore, J. Algebra 146(2) (1992), 318-334. · Zbl 0762.11045
[28] MOTODA, Y.—NAKAHARA, T.—SHAH, S. I. A.: On a problem of Hasse, J. Number Theory 96 (2002), 326-334. · Zbl 1032.11043
[29] NEUKIRCH, J.: Algebraic Number Theory, Springer-Verlag, Berlin, 1999. · Zbl 0956.11021
[30] ORE, O.: Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann 99 (1928), 84-117. · JFM 54.0191.02
[31] PETHÖ, A.—POHST, M.: On the indices of multiquadratic number fields, Acta Arith. 153(4) (2012), 393-414. · Zbl 1255.11052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.