×

Algebraic geometry: moduli spaces, birational geometry and derived aspects. Abstracts from the workshop held July 10–16, 2022. (English) Zbl 1520.00027

Summary: The workshop covered recent developments in algebraic geometry in a broad sense with a special emphasis on various moduli spaces. Problems related to mirror symmetry phenomena were discussed in a number of talks as well as singularity theory in the context of the MMP in positive characteristic. Derived categories and algebraic cycles, as well as rationality questions figured prominently in the talks and the discussions.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
14D20 Algebraic moduli problems, moduli of vector bundles
14E30 Minimal model program (Mori theory, extremal rays)
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14J33 Mirror symmetry (algebro-geometric aspects)
14D22 Fine and coarse moduli spaces
14D23 Stacks and moduli problems
14J28 \(K3\) surfaces and Enriques surfaces
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
Full Text: DOI

References:

[1] M. Gross, P. Hacking, S. Keel, B. Siebert, Theta functions for K3 surfaces, in preparation.
[2] M. Gross, B. Siebert, Intrinsic mirror symmetry, preprint, 2019.
[3] M. Gross, B. Siebert, The canonical wall structure and intrinsic mirror symmetry, Invent. math. (2022). https://doi.org/10.1007/s00222-022-01126-9 · Zbl 1502.14090 · doi:10.1007/s00222-022-01126-9
[4] D.R. Morrison, Comactifications of moduli spaces inspired by mirror symmetry, Journées de Gómétrie Algébrique d’Orsay (Juillet 1992), Astérisque, vol. 218, 1993, pp. 243-271 · Zbl 0824.14007
[5] H. Ruddat, B. Siebert, Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations. Publ. Math. IHES 132, 1-82 (2020). https://doi.org/10.1007/s10240-020-00116-y References · Zbl 1454.14110 · doi:10.1007/s10240-020-00116-yReferences
[6] J. Alper, D. Halpern-Leistner, and J. Heinloth, Existence of moduli spaces for algebraic stacks, preprint arXiv:1812.01128 (2018).
[7] F. Ambro, The moduli b-divisor of an lc-trivial fibration, Compos. Math. 141 (2005), no. 2, 385-403. · Zbl 1094.14025
[8] K. Ascher, K. DeVleming, and Y. Liu, Wall crossing for K-moduli spaces of plane curves, preprint arXiv:1909.04576 (2019).
[9] S. Filipazzi, On a generalized canonical bundle formula and generalized adjunction, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1187-1221. · Zbl 1473.14103
[10] P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), no. 2, 213-257. References · Zbl 1060.14034
[11] J. Bergström, S. Minabe, On the cohomology of moduli spaces of (weighted) stable rational curves, Math. Z 275 (3-4) (2013) 1095-1108. · Zbl 1304.14030
[12] J. Choi, Y.-H. Kiem, D. Lee, Representations on the cohomology of M 0,n , arXiv:2203.05883.
[13] A.-M. Castravet, J. Tevelev, Derived category of moduli of pointed curves -I, Algebraic Geometry 7 (6) (2020) 722-757. · Zbl 1467.14069
[14] A.-M. Castravet, J. Tevelev, Exceptional collections on certain Hassett spaces,Épijournal de Géométrie Algébrique, 4 (2021).
[15] A.-M. Castravet, J. Tevelev, Derived category of moduli of pointed curves -II, arXiv:2002.02889 · Zbl 1467.14069
[16] E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, The moduli space of curves (Texel Island, 1994), Progr. Math.129 ,199-230, Birkhäuser Boston, Boston, MA, 1995. · Zbl 0851.18005
[17] B. Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2) (2003), 316-352. · Zbl 1072.14014
[18] M.-x. Huang, S. Katz, A. Klemm, Topological string on elliptic CY 3-folds and the ring of Jacobi forms, J. High Energy Phys. 2015, no. 10, 125, front matter+78 pp. · Zbl 1388.81219
[19] G. Oberdieck, Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface, arXiv:2202.03361
[20] G. Oberdieck, J. Shen, Curve counting on elliptic Calabi-Yau threefolds via derived cate-gories, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 3, 967-1002. · Zbl 1453.14139
[21] G. Oberdieck, A. Pixton, Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations, Geometry & Topology 23 (2019) 1415-1489 · Zbl 1441.14184
[22] R. Pandharipande, R. P. Thomas, 13/2 ways of counting curves, Moduli spaces, 282-333, London Math. Soc. Lecture Note Ser., 411, Cambridge Univ. Press, Cambridge, 2014. · Zbl 1310.14031
[23] M. Schimpf, Curve counting on P 2 × E, Hodge integrals over the elliptic curve and quasi-Jacobi forms, 2021, Master thesis, University of Bonn.
[24] T. Pȃdurariu and Y. Toda, Categorical and K-theoretic Donaldson-Thomas theory of C 3 (part I), arXiv:2207.01899.
[25] F. Meng and M. Popa, Kodaira dimension of fibrations over abelian varieties, preprint arXiv:2111.14165
[26] M. Popa, Conjectures on the Kodaira dimension, preprint arXiv:2111.10900
[27] M. Popa and Ch. Schnell, Viehweg’s hyperbolicity conjecture for families with maximal variation, Invent. Math. 208 (2017), no.3, 677-713 · Zbl 1375.14043
[28] M. Popa and Ch. Schnell, On the behavior of Kodaira dimension under smooth morphisms, preprint arXiv:2202.02825
[29] J. Kollár, Families of varieties of general type, 2022. web.math.princeton.edu/∼kollar/FromMyHomePage/modbook.pdf. · Zbl 07658187
[30] S. Mori, On a generalization of complete intersections, Journal of Mathematics of Kyoto University, 15 (1975), pp. 619 -646. · Zbl 0332.14019
[31] J. C. Ottem and S. Schreieder, On deformations of quintic and septic hypersurfaces, Journal de Mathématiques Pures et Appliquées, 135 (2020), pp. 140-158. · Zbl 1432.14035
[32] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyper-quadrics, J. Math. Kyoto Univ., 13 (1973), pp. 31-47. · Zbl 0261.32013
[33] E. Horikawa, On deformations of quintic surfaces, Proc. Japan Acad., 49 (1973), pp. 377-379. · Zbl 0273.14015
[34] J.-M. Hwang, Nondeformability of the complex hyperquadric, Invent. Math., 120 (1995), pp. 317-338. · Zbl 0846.32021
[35] T. Fujita, Classification theories of polarized varieties, vol. 155 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1990. · Zbl 0743.14004
[36] E. E. Griffin, Families of quintic surfaces and curves, Compositio Mathematica, 55 (1985), pp. 33-62. · Zbl 0578.14033
[37] P. Hacking, Compact moduli of plane curves, Duke Math. J., 124 (2004), pp. 213-257. · Zbl 1060.14034
[38] K. DeVleming, Moduli of surfaces in P 3 , (2019). arXiv:1903.09230.
[39] E. Brieskorn, Ein Satzüber die komplexen Quadriken, Math. Ann., 155 (1964), pp. 184-193. · Zbl 0119.37703
[40] S. Druel, J. V. Pereira, B. Pym, and F. Touzet, A global Weinstein splitting theorem for holomorphic Poisson manifolds, to appear in Geometry and Topology. · Zbl 1511.53074
[41] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523-557. · Zbl 0524.58011
[42] B. Hassett, A. Pirutka and Yu. Tschinkel. A very general quartic double fourfold is not stably rational. Algebr. Geom. 6(1):64-75, 2019. · Zbl 1535.14038
[43] J. Nicaise and J.C. Ottem. Tropical degenerations and stable rationality. Duke Math. J. (to appear). · Zbl 1509.14121
[44] J. Nicaise and J.C. Ottem. A refinement of the motivic volume, and specialization of bira-tional types. Rationality of Varieties, Progress in Mathematics 342, 291-322 (2021). · Zbl 1497.14030
[45] J. Nicaise and E. Shinder. The motivic nearby fiber and degeneration of stable rationality. Invent. Math. 217(2):377-413, 2019. · Zbl 1455.14029
[46] Emelie Arvidsson, Fabio Bernasconi, Justin Lacini, On the Kawamata-Viehweg vanish-ing theorem for log del Pezzos in positive characteristics, Compositio Mathematica, 158(4) (2022), 750 -763 · Zbl 1489.14024
[47] Fabio Bernasconi, Kawamata-Viehweg vanishing fails for log del Pezzo surfaces in charac-teristic 3, Journal of Pure and Applied Algebra, 225(11) (2021) · Zbl 1505.14036
[48] Cascini, P., Tanaka, H., Purely Log Terminal Threefolds with Non-Normal Centres in Char-acteristic Two, American Journal of Mathematics, 141(4), (2019), 941-979 · Zbl 1460.14040
[49] Cascini, P., Tanaka, H., Witaszek, J. (2017). On log del Pezzo surfaces in large character-istic, Compositio Mathematica, 153(4), 820-850 · Zbl 1419.14020
[50] Deligne, P., Illusie, L., Relevements modulo p 2 et decomposition du complexe de de Rham Inventiones Mathematicae, 89 (1987), 247-270 · Zbl 0632.14017
[51] Hacon, C., Witaszek, J., On the rationality of Kawamata log terminal singularities in pos-itive characteristic Algebraic Geometry, 6(5), (2019), 516-529 · Zbl 1439.14056
[52] Michel Raynauld, Contre-exemple au “vanishing theorem” en caractéristique p > 0, C. P. Ramanujam-a tribute, Tata Inst. Fund. Res. Studies in Math. (1978), 273-278. · Zbl 0441.14006
[53] Burt Totaro, The failure of Kodaira vanishing for Fano varieties, and terminal singularities that are not Cohen-Macaulay, J. Algebraic Geom. 28 (2019), 751-771. · Zbl 1441.14138
[54] M. Gross. Topological mirror symmetry. Inventiones Mathematicae 144 (2001), 75-137. · Zbl 1077.14052
[55] M. Gross. Toric degenerations and Batyrev-Borisov duality. Mathematische Annalen 3 (2005), 645-688. · Zbl 1086.14035
[56] J. Hultgren, M. Jonsson, E. Mazzon and N. McCleerey Tropical and non-Archimedean Monge-Ampère equations for a class of Calabi-Yau varieties, in preparation
[57] J. Kollár. Singularities of the minimal model program. Cambridge University Press, Cam-bridge , 200 (2013). · Zbl 1282.14028
[58] M. Kontsevich and Y. Soibelman. Affine structures and non-Archimedean analytic spaces. In The unity of mathematics. Progr. Math. 244, 321-385. Birkhäuser Boston, Boston, MA, 2006. · Zbl 1114.14027
[59] Y. Li. SYZ conjecture for Calabi-Yau hypersurfaces in the Fermat family. arXiv:1912.02369v1.
[60] Y. Li. Metric SYZ conjecture and non-archimedean geometry. arXiv:2007.01384.
[61] E. Mazzon and L. Pille-Schneider. Toric geometry and integral affine structures in non-archimedean mirror symmetry. arXiv:2110.04223.
[62] M. Mustaţǎ and J. Nicaise. Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton. Algebr. Geom. 2 (2015), 365-404. · Zbl 1322.14044
[63] J. Nicaise and C. Xu. The essential skeleton of a degeneration of algebraic varieties. Amer-ican Journal of Mathematics 138 (2016), 1645-1667. · Zbl 1375.14092
[64] J. Nicaise, C. Xu and T. Y. Yu. The non-Archimedean SYZ fibration. Compositio Math. 155 (2019), 953-972. · Zbl 1420.14093
[65] W.-D. Ruan. Lagrangian torus fibration of quintic hypersurfaces. I. Fermat quintic case. in Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999). Amer. Math. Soc. 23 (2001), 297-332. · Zbl 1079.14526
[66] A. Strominger, S.-T. Yau, E. Zaslov. Mirror Symmetry is T-duality. Nucl. Phys. B479, 243-259, 1996. · Zbl 0896.14024
[67] C. Vilsmeier. A comparison of the real and non-archimedean Monge-Ampère operator. Math. Z. 297 (2021), 633-668. · Zbl 1457.32057
[68] Y. André, Pour une théorie inconditionnelle des motifs. Inst. HautesÉtudes Sci. Publ. Math. No. 83 (1996), 5-49. · Zbl 0874.14010
[69] Y. André, On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann. 305 (1996), 205-248. · Zbl 0942.14018
[70] S. Bloch, V. Srinivas, Remarks on correspondences and algebraic cycles. Amer. J. Math. 105 (1983), no. 5, 1235-1253. · Zbl 0525.14003
[71] F. Charles, The Tate conjecture for K3 surfaces over finite fields. Invent. Math. 194 (2013), no. 1, 119-145. · Zbl 1282.14014
[72] F. Charles, Birational boundedness for holomorphic symplectic varieties, Zarhin’s trick for K3 surfaces, and the Tate conjecture. Ann. of Math. (2) 184 (2016), no. 2, 487-526. · Zbl 1387.14102
[73] J.-L. Colliot-Thélène, C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière. Duke Math. J. 161 (2012), no. 5, 735-801. · Zbl 1244.14010
[74] O. Debarre, Gushel-Mukai varieties. Preprint, 2020.arXiv: 2001.03485. · Zbl 1467.14031
[75] O. Debarre, A. Iliev, L. Manivel, On the period map for prime Fano threefolds of degree 10. J. Algebraic Geom. 21 (2012), no. 1, 21-59. · Zbl 1250.14029
[76] O. Debarre, A. Iliev, L. Manivel, Special prime Fano fourfolds of degree 10 and index 2. In: Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser. 417, Cambridge Univ. Press, 2015; pp. 123-155. · Zbl 1326.14094
[77] O. Debarre, A. Kuznetsov, Gushel-Mukai varieties: classification and birationalities. Algebr. Geom. 5 (2018), no. 1, 15-76. · Zbl 1408.14053
[78] O. Debarre, A. Kuznetsov, Gushel-Mukai varieties: linear spaces and periods. Kyoto J. Math. 59 (2019), no. 4, 897-953. · Zbl 1440.14053
[79] O. Debarre, A. Kuznetsov, Gushel-Mukai varieties: moduli. Internat. J. Math. 31 (2020), no. 2, 2050013, 59 pp. · Zbl 1467.14031
[80] O. Debarre, A. Kuznetsov, Gushel-Mukai varieties: intermediate Jacobians.Épijournal Géom. Algébrique 4 (2020), Art. 19, 45 pp. · Zbl 1457.14092
[81] L. Fu, B. Moonen, Algebraic cycles on Gushel-Mukai varieties. Preprint, arXiv:2207.01118.
[82] L. Fu, B. Moonen, The Tate Conjecture for even dimensional Gushel-Mikai varieties in characteristic p ≥ 5. Preprint,arXiv 2207.01122.
[83] L. Fu, Z. Tian, 2-Cycles sur les hypersurfaces cubiques de dimension 5. Math. Z. 293 (2019), no. 1-2, 661-676. · Zbl 1440.14021
[84] L. Fu, C. Vial, A motivic global Torelli theorem for isogenous K3 surfaces. Adv. Math. 383 (2021), Paper No. 107674. · Zbl 1464.14011
[85] L. Fu, C. Vial, Cubic fourfolds, Kuznetsov components and Chow motives. Preprint, 2020.
[86] D. Huybrechts, Motives of derived equivalent K3 surfaces. Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 1, 201-207. · Zbl 1426.14004
[87] A. Iliev, L. Manivel, Fano manifolds of degree ten and EPW sextics. Ann. Sci.Éc. Norm. Supér. (4) 44 (2011), no. 3, 393-426. · Zbl 1258.14050
[88] M. Kisin, Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc. 23 (2010), no. 4, 967-1012. · Zbl 1280.11033
[89] A. Kuznetsov, A. Perry, Derived categories of Gushel-Mukai varieties. Compos. Math. 154 (2018), no. 7, 1362-1406. · Zbl 1401.14181
[90] A. Kuznetsov, A. Perry, Categorical cones and quadratic homological projective duality. Preprint, 2019. To appear in Ann. Sci.École Norm. Sup.
[91] R. Laterveer, Algebraic varieties with small Chow groups. J. Math. Kyoto Univ. 38 (1998), no. 4, 673-694. · Zbl 0961.14003
[92] K. Madapusi Pera, The Tate conjecture for K3 surfaces in odd characteristic. Invent. Math. 201 (2015), no. 2, 625-668. · Zbl 1329.14079
[93] K. Madapusi Pera, Integral canonical models for Spin Shimura varieties. Compos. Math. 152 (2016), no. 4, 769-824. · Zbl 1391.11079
[94] B. Moonen, On the Tate and Mumford-Tate conjectures in codimension 1 for varieties with h 2,0 = 1. Duke Math J. 166 (2017), no. 4, 739-799. · Zbl 1372.14008
[95] K. O’Grady, Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics. Duke Math. J. 134 (2006), 99-137. · Zbl 1105.14051
[96] A. Perry, The integral Hodge conjecture for two-dimensional Calabi-Yau categories. Com-pos. Math. 158 (2022), no. 2, 287-333. · Zbl 1492.14029
[97] C. Voisin, Degree 4 unramified cohomology with finite coefficients and torsion codimension 3 cycles, In: Geometry and Arithmetic; EMS Ser. Congr. Rep., European Math. Soc., 2012, pp. 347-368. · Zbl 1317.14044
[98] Yu. Zarhin, Abelian varieties in characteristic p. Mat. Zametki 19 (1976), no. 3, 393-400. (English translation: Math. Notes 19 (1976), no. 3-4, 240-244.) · Zbl 0342.14011
[99] L. Zhou, Chow groups of Gushel-Mukai fivefolds. Preprint, 2021. arXiv: 2101.05576. References · Zbl 1527.14074
[100] H. Derksen, The G-stable rank for tensors, arXiv:2002.08435.
[101] D. Kazhdan, A. Polishchuk, Linear subspaces of minimal codimension in hypersurfaces, arXiv:2107.08080, to appear in Math. Research Letters. · Zbl 1527.14108
[102] A. Polishchuk, C. Wang, Linear subspaces in cubic hypersurfaces, arxiv:2206.09121. References
[103] R. Bamler Convergence of Ricci flows with bounded scalar curvature, Ann. of Math. 188 (2018), 753-831. · Zbl 1410.53063
[104] H. Blum, Y. Liu, C. Xu, and Z. Zhuang. The existence of the Kähler-Ricci soliton degener-ation, arXiv:2103.15278.
[105] S. Boucksom, T. Hisamoto, and M. Jonsson. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier 67 (2017), no. 2, 743-841. · Zbl 1391.14090
[106] X.X. Chen, S. K. Donaldson and S. Sun. Kähler-Einstein metrics on Fano manifolds, I-III, J. Amer. Math. Soc. 28 (2015), 183-197, 199-234, 235-278. · Zbl 1311.53059
[107] X.X. Chen, S. Sun, and B. Wang. Kähler-Ricci flow, Kähler-Einstein metric, and K-stability, Geom. Topol. 22 (2018). · Zbl 1404.53058
[108] X.X. Chen and B. Wang. Space of Ricci flows (II)-Part B: Weak compactness of the flows, J. Differential Geom. 116 (2020), 1-123. · Zbl 1479.53103
[109] S. K. Donaldson. Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289-349. · Zbl 1074.53059
[110] V. Datar and G. Székelyhidi. Kähler-Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016) no. 4, 975-1010 · Zbl 1359.32019
[111] R. Dervan and G. Székelyhidi. The Kähler-Ricci flow and optimal degenerations, J. Differ-ential Geom. 116 (2020), 187-203. · Zbl 1447.53081
[112] K. Fujita. A valuative criterion for uniform K-stability of Q-Fano varieties, J. Reine Angew. Math. 751 (2019), 309-338. · Zbl 1435.14039
[113] J. Han and C. Li. Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties, arXiv:2009.01010.
[114] E. Inoue. The moduli space of Fano manifolds with Kähler-Ricci solitons. Adv. Math. 357 (2019), 106841. · Zbl 1439.32062
[115] C. Li. K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017), 3147-3218. · Zbl 1409.14008
[116] Y. Liu, C. Xu, and Z. Zhuang. Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. 196 (2022), 507-566. · Zbl 1503.14041
[117] G. Tian. Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 239-265.
[118] G. Tian. K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 1085-1156. · Zbl 1318.14038
[119] D.Abramovich, M.Olsson, V. Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057-1091. · Zbl 1222.14004
[120] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/68), 336-358. · Zbl 0219.14003
[121] H. Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 90-102. Princeton Uni-versity Press, Princeton, N.J. 1957. · Zbl 0084.07202
[122] H. Esnault, E. Viehweg, Two-dimensional quotient singularities deform to quotient singu-larities, Math. Ann. 271 (1985), no. 3, 439-449. · Zbl 0541.14004
[123] H. Esnault, E. Viehweg, Surface singularities dominated by smooth varieties, J. Reine Angew. Math. 649 (2010), 1-9. · Zbl 1211.14010
[124] H. Flenner, Reine lokale Ringe der Dimension zwei, Math. Ann. 216 (1975), no. 3, 253-263. · Zbl 0293.13010
[125] F. Klein, Vorlesungenüber das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser Verlag, Basel; B. G. Teubner, Stuttgart, 1993. xxviii+viii+343 pp. · Zbl 0803.01037
[126] C. Liedtke, G. Martin, Y. Matsumoto, Linearly Reductive Quotient Singularities, arXiv:2102.01067 (2021)
[127] C. Liedtke, G. Martin, Y. Matsumoto, Torsors over the Rational Double Points in Charac-teristic p, arXiv:2110.03650 (2021)
[128] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. HautesÉtudes Sci. Publ. Math. No. 9, (1961), 5-22. · Zbl 0108.16801
[129] M. Nagata, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ. 1 (1961/62), 87-99. · Zbl 0106.25201
[130] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375-386. · Zbl 0179.12301
[131] O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Grup-pen), Math. Ann. 209 (1974), 211-248. · Zbl 0275.32010
[132] K. Sato, S. Takagi, Arithmetic and geometric deformations of F-pure and F-regular singu-larities, arXiv:2103.03721v2 (2021)
[133] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26. · Zbl 0232.14005
[134] J. Wolf, Spaces of constant curvature, Sixth edition. AMS Chelsea Publishing, Providence, RI, 2011. xviii+424 pp. · Zbl 1216.53003
[135] Philip Candelas, Xenia de la Ossa, Paul S. Green and Linda Parkes. A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, 1991; Nuclear Phys. B, 359 (1), pages 21-74. · Zbl 1098.32506
[136] Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev and Alexander Kasprzyk Mirror Symmetry and Fano manifolds, 2012; European Congress of Mathematics, pages 285-300. · Zbl 1364.14032
[137] Pieter Belmans. Semiorthogonal decompositions for moduli of sheaves on curves Oberwolfach Reports 24/2018, Interactions between Algebraic Geometry and Noncommutative Algebra, pages 1473-1476.
[138] Pieter Belmans, Sergey Galkin and Swarnava Mukhopadhyay. Decompositions of moduli spaces of vector bundles and graph potentials, 2022; arXiv:2009.05568v3. · Zbl 1525.14016
[139] Pieter Belmans, Sergey Galkin and Swarnava Mukhopadhyay. Graph potentials and sym-plectic geometry of moduli spaces of vector bundles, 2022; arXiv:2206.11584. · Zbl 1525.14016
[140] Pieter Belmans, Sergey Galkin and Swarnava Mukhopadhyay. Graph potentials and topo-logical quantum field theories, 2022; arXiv:2205.07244. · Zbl 1525.14016
[141] Tohru Eguchi, Kentaro Hori and Chuan-Sheng Xiong. Gravitational quantum cohomology, 1997; Internat. J. Modern Phys. A, 12 (9), pages 1743-1782. · Zbl 1072.32500
[142] Sergey Galkin, Vasily Golyshev and Hiroshi Iritani. Gamma classes and quantum cohomol-ogy of Fano manifolds: Gamma conjectures, 2016; Duke Math. J., 165 (11), pages 2005-2077. · Zbl 1350.14041
[143] Maxim Kontsevich. Homological algebra of mirror symmetry, 1995; Proceedings of the In-ternational Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 120-139. · Zbl 0846.53021
[144] Christopher Manon. The algebra of conformal blocks, 2018; J. Eur. Math. Soc. (JEMS), 20 (11), pages 2685-2715. · Zbl 1428.14019
[145] Takeo Nishinou, Yuichi Nohara and Kazushi Ueda, Toric degenerations of Gelfand-Cetlin systems and potential functions, 2010; Adv. Math., 224 (2), pages 648-706. · Zbl 1221.53122
[146] Jenia Tevelev and Sebastián Torres. The BGMN conjecture via stable pairs, 2021; arXiv:2108.11951.
[147] Dmitry Tonkonog. String topology with gravitational descendants, and periods of Landau-Ginzburg potentials, 2018; arXiv:1801.06921. · Zbl 1386.53104
[148] Kai Xu and Shing-Tung Yau. Semiorthogonal decomposition of D b (Bun L 2 ), 2021; arXiv:2108.13353. References
[149] P. Hacking, Exceptional bundles associated to degenerations of surfaces, Duke Math. J., 162, (2013), 1171-1202 · Zbl 1282.14074
[150] P. Hacking, J. Tevelev, G. Urzúa, Flipping surfaces, J. Alg. Geom., 26, (2017), 279-345 · Zbl 1360.14055
[151] M. Kalck, J. Karmazyn, Noncommutative Knörrer type equivalences via noncommutative resolutions of singularities, arXiv:1707.02836
[152] J. Karmazyn, A. Kuznetsov, E. Shinder, Derived categories of singular surfaces, J. Eur. Math. Soc. 24, (2022) 461-526. · Zbl 1493.14023
[153] Y. Kawamata, Semi-orthogonal decomposition and smoothing, arXiv:2112.14452v1.
[154] J. Kollár, N.I. Shepherd-Barron, Threefolds and deformations of surface singularities, In-vent. Math., 91, (1988), 299-338 · Zbl 0642.14008
[155] J. Tevelev, G. Urzúa, Categorical aspects of the Kollár-Shepherd-Barron correspondence, arXiv:2204.13225
[156] P. Achinger: Frobenius push-forwards on quadrics, Comm. Algebra 40 (2012), no. 8, 2732-2748. 2968908 · Zbl 1283.14008
[157] R. Hartshorne: Ample subvarieties of algebraic varieties, Lecture Notes in Mathemat-ics, Vol. 156, Springer-Verlag, Berlin-New York, 1970, Notes written in collaboration with C. Musili. 0282977 · Zbl 0208.48901
[158] J. Kollár: Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathemat-ics], vol. 32, Springer-Verlag, Berlin, 1996. 1440180
[159] E. Kunz: Characterizations of regular local rings for characteristic p, American Journal of Mathematics 91 (1969), 772-784. MR0252389 (40 #5609) · Zbl 0188.33702
[160] A. Langer: D-affinity and Frobenius morphism on quadrics, Int. Math. Res. Not. IMRN (2008), no. 1, Art. ID rnm 145, 26. 2417792 · Zbl 1194.14025
[161] T. Mabuchi: C 3 -actions and algebraic threefolds with ample tangent bundle, Nagoya Math. J. 69 (1978), 33-64. 477169 · Zbl 0359.32009
[162] S. Mori: Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593-606. 554387 · Zbl 0423.14006
[163] S. Mori and H. Sumihiro: On Hartshorne’s conjecture, J. Math. Kyoto Univ. 18 (1978), no. 3, 523-533. 509496 · Zbl 0422.14030
[164] R. Abuaf. Homological units. Int. Math. Res. Not. IMRN, (22):6943-6960, 2017. · Zbl 1405.14044
[165] N. Addington. The Brauer group is not a derived invariant. In Brauer groups and obstruction problems, volume 320 of Progr. Math., pages 1-5. Birkhäuser/Springer, Cham, 2017. · Zbl 1386.14082
[166] N. Addington and D. Bragg. Hodge numbers are not derived invariants in positive charac-teristic. Preprint, arXiv:2106.09949. · Zbl 1532.14036
[167] B. Antieau and D. Bragg. Derived invariants from topological Hochschild homology. Algebr. Geom., 9(3):364-399, 2022. · Zbl 1535.14054
[168] B. Antieau and G. Vezzosi. A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic p. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 20(3):1135-1145, 2020. · Zbl 1476.14046
[169] T. Bridgeland and S. Iyengar. A criterion for regularity of local rings. C. R. Math. Acad. Sci. Paris, 342(10):723-726, 2006. · Zbl 1106.13025
[170] T. Bridgeland and A. Maciocia. Fourier-Mukai transforms for K3 and elliptic fibrations. J. Algebraic Geom., 11(4):629-657, 2002. · Zbl 1066.14047
[171] M. Gross and S. Popescu. Calabi-Yau threefolds and moduli of abelian surfaces. I. Compo-sitio Math., 127(2):169-228, 2001. · Zbl 1063.14051
[172] M. Popa and C. Schnell. Derived invariance of the number of holomorphic 1-forms and vector fields. Ann. Sci.Éc. Norm. Supér. (4), 44(3):527-536, 2011. · Zbl 1221.14020
[173] C. Schnell. The fundamental group is not a derived invariant. In Derived categories in algebraic geometry, EMS Ser. Congr. Rep., pages 279-285. Eur. Math. Soc., Zürich, 2012. References · Zbl 1284.14024
[174] A. Cadoret, F. Charles, A remark on uniform boundedness for Brauer groups, Algebraic Geometry 7 (2020), pp. 512-522. · Zbl 1451.14021
[175] A. Cadoret, A. Tamagawa Uniform boundedness of p-primary torsion of abelian schemes, Invent. Math. 188 (2012), no. 1, 83-125. · Zbl 1294.14011
[176] F. Charles, A. Pirutka, Finitude uniforme pour les cycles de codimension 2 sur les corps de nombres, arXiv:2207.05805.
[177] J.-L. Colliot-Thélène, W. Raskind, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. Math. 105 (1991), no. 2, 221-245. · Zbl 0752.14004
[178] J.-L. Colliot-Thélène, J.-J. Sansuc, Sir P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, II. J. Reine Angew. Math. 373 (1987), 37-107 ; ibid. 374 (1987), 72-168. · Zbl 0622.14030
[179] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437-449. · Zbl 0936.11037
[180] K. McKinnie, J. Sawon, S. Tanimoto, T. Várilly-Alvarado, Brauer groups on K3 surfaces and arithmetic applications, Brauer groups and obstruction problems: moduli spaces and arithmetic (A. Auel, B. Hassett, A. Várilly-Alvarado, and B. Viray eds.), Progress in Math-ematics 320 (2017), 177-218. · Zbl 1376.14040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.