×

Hodge numbers are not derived invariants in positive characteristic. (English) Zbl 1532.14036

Summary: We study a pair of Calabi-Yau threefolds \(X\) and \(M\), fibered in non-principally polarized Abelian surfaces and their duals, and an equivalence \(D^b(X) \cong D^b(M)\), building on work of M. Gross and S. Popescu [Compos. Math. 127, No. 2, 169–228 (2001; Zbl 1063.14051)], A. Bak [“The spectral construction for a \((1,8)\)-polarized family of abelian varieties”, Preprint, arXiv:0903.5488], and C. Schnell [in: Derived categories in algebraic geometry. Proceedings of a conference held at the University of Tokyo, Japan in January 2011. Zürich: European Mathematical Society (EMS). 279–285 (2012; Zbl 1284.14024)]. Over the complex numbers, \(X\) is simply connected while \(\pi_1(M) = (\mathbf{Z}/3)^2\). In characteristic 3, we find that \(X\) and \(M\) have different Hodge numbers, which would be impossible in characteristic 0. In an appendix, we give a streamlined proof of R. Abuaf’s result [Int. Math. Res. Not. 2017, No. 22, 6943–6960 (2017; Zbl 1405.14044)] that the ring \(\mathrm{H}^*({\mathscr{O}})\) is a derived invariant of complex threefolds and fourfolds. A second appendix by Alexander Petrov gives a family of higher-dimensional examples to show that \(h^{0,3}\) is not a derived invariant in any positive characteristic.

MSC:

14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
18G80 Derived categories, triangulated categories

Software:

Macaulay2; Magma

References:

[1] Abuaf, R., Homological units, Int. Math. Res. Not. IMRN, 22, 6943-6960 (2017) · Zbl 1405.14044
[2] Achinger, P.; Zdanowicz, M., Serre-Tate theory for Calabi-Yau varieties, J. Reine Angew. Math., 780, 139-196 (2021) · Zbl 1489.14048 · doi:10.1515/crelle-2021-0041
[3] Addington, N.: The Brauer group is not a derived invariant. In: Brauer groups and obstruction problems, volume 320 of Progr. Math., pages 1-5. Birkhäuser/Springer, Cham, (2017). Also arXiv:1306.6538 · Zbl 1386.14082
[4] Addington, N.; Hassett, B.; Tschinkel, Yu; Várilly-Alvarado, A., Cubic fourfolds fibered in sextic del Pezzo surfaces, Am. J. Math., 141, 6, 1479-1500 (2019) · Zbl 1471.14031 · doi:10.1353/ajm.2019.0041
[5] Altman, A.; Kleiman, S., Compactifying the Picard scheme. II, Am. J. Math., 101, 1, 10-41 (1979) · Zbl 0427.14016 · doi:10.2307/2373937
[6] Antieau, B.; Bragg, D., Derived invariants from topological Hochschild homology, Algebr. Geom., 9, 3, 364-399 (2022) · Zbl 1535.14054 · doi:10.14231/AG-2022-011
[7] Antieau, B.; Vezzosi, G., A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic \(p\), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 20, 3, 1135-1145 (2020) · Zbl 1476.14046
[8] Bak, A.: The spectral construction for a (1,8)-polarized family of abelian varieties. Preprint, arXiv:0903.5488
[9] Bartocci, C., Bruzzo, U., Hernández Ruipérez, D.: Fourier-Mukai and Nahm transforms in geometry and mathematical physics, volume 276 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, (2009) · Zbl 1186.14001
[10] Bhatt, B., Scholze, P.: Prisms and Prismatic Cohomology. Ann. of Math. (2), to appear. Also arXiv:1905.08229 · Zbl 07611906
[11] Birkenhake, Ch., Lange, H.: Complex abelian varieties, volume 302 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, (2004) · Zbl 1056.14063
[12] Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char. \(p\). II. In: Complex analysis and algebraic geometry, pages 23-42. (1977) · Zbl 0348.14021
[13] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4), (1997). Computational algebra and number theory (London, 1993) · Zbl 0898.68039
[14] Bridgeland, T., Iyengar, S.: A criterion for regularity of local rings. C. R. Math. Acad. Sci. Paris 342(10), 723-726 (2006). arXiv:0602235 [math] · Zbl 1106.13025
[15] Bridgeland, T., Maciocia, A.: Fourier-Mukai transforms for K3 and elliptic fibrations. J. Algebraic Geom. 11(4), 629-657 (2002). arXiv:9908022 [math] · Zbl 1066.14047
[16] Calabrese, J.; Thomas, RP, Derived equivalent Calabi-Yau threefolds from cubic fourfolds, Math. Ann., 365, 1-2, 155-172 (2016) · Zbl 1342.14036 · doi:10.1007/s00208-015-1260-6
[17] Chambert-Loir, A.: Cohomologie cristalline: un survol. Exposition. Math., 16(4), 333-382 (1998). Also webusers.imj-prg.fr/\( \sim\) antoine.chambert-loir/publications/papers/cristal.pdf · Zbl 0944.14008
[18] Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. II. Lecture Notes in Mathematics, Vol. 340. Springer-Verlag, Berlin-New York, (1973). Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz
[19] Eisenbud, D.: Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1995). With a view toward algebraic geometry · Zbl 0819.13001
[20] Ekedahl, T., Hyland, J.M.E., Shepherd-Barron, N.I.: Moduli and periods of simply connected Enriques surfaces. Preprint, arXiv:1210.0342
[21] Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. Available at www.math.uiuc.edu/Macaulay2
[22] Gross, M.; Pavanelli, S., A Calabi-Yau threefold with Brauer group \(({\bf Z}/8{\bf Z})^2\), Proc. Am. Math. Soc., 136, 1, 1-9 (2008) · Zbl 1127.14036 · doi:10.1090/S0002-9939-07-08840-5
[23] Gross, M.; Popescu, S., Calabi-Yau threefolds and moduli of abelian surfaces. I, Comp. Math., 127, 2, 169-228 (2001) · Zbl 1063.14051 · doi:10.1023/A:1012076503121
[24] Hartshorne, R.: Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52 · Zbl 0367.14001
[25] Hesselholt, L., On the \(p\)-typical curves in Quillen’s \(K\)-theory, Acta Math., 177, 1, 1-53 (1996) · Zbl 0892.19003 · doi:10.1007/BF02392597
[26] Honigs, K.: Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties. Proc. Amer. Math. Soc., 146(3), 1005-1013 (2018). With an appendix by J. Achter, S. Casalaina-Martin, K. Honigs, and C. Vial. Also arXiv:1604.00042 · Zbl 1453.14049
[27] Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, (2006) · Zbl 1095.14002
[28] Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2010) · Zbl 1206.14027
[29] Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup., 12, 4, 501-661 (1979) · Zbl 0436.14007 · doi:10.24033/asens.1374
[30] Illusie, L.: Finiteness, duality, and Künneth theorems in the cohomology of the de Rham-Witt complex. In: Algebraic geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pages 20-72. Springer, Berlin, (1983) · Zbl 0538.14013
[31] Illusie, L.; Raynaud, M., Les suites spectrales associées au complexe de de Rham-Witt, Inst. Hautes Études Sci. Publ. Math., 57, 73-212 (1983) · Zbl 0538.14012 · doi:10.1007/BF02698774
[32] Jensen, ST, Picard schemes of quotients by finite commutative group schemes, Math. Scand., 42, 2, 197-210 (1978) · Zbl 0406.14027 · doi:10.7146/math.scand.a-11748
[33] Joshi, K., Exotic torsion, Frobenius splitting and the slope spectral sequence, Canad. Math. Bull., 50, 4, 567-578 (2007) · Zbl 1202.14019 · doi:10.4153/CMB-2007-054-9
[34] Joshi, K., Crystalline aspects of geography of low dimensional varieties I: numerology, Eur. J. Math., 6, 4, 1111-1175 (2020) · Zbl 1506.14041 · doi:10.1007/s40879-020-00416-x
[35] Katz, NM, Algebraic solutions of differential equations \((p\)-curvature and the Hodge filtration), Invent. Math., 18, 1-118 (1972) · Zbl 0278.14004 · doi:10.1007/BF01389714
[36] Kollár, J.: Fundamental groups and path lifting for algebraic varieties. In: Singularities and their interaction with geometry and low dimensional topology—in honor of András Némethi, Trends Math., pages 97-116. Birkhäuser/Springer, Cham, (2021). Also arXiv:1906.11816 · Zbl 1468.14047
[37] Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) · Zbl 0926.14003
[38] Kudo, M.: Computing representation matrices for the action of Frobenius on cohomology groups. J. Symb Comput. (2020)
[39] Lam, Y.H.J.: Calabi-Yau threefolds over finite fields and torsion in cohomologies. Preprint, arXiv:2009.09951
[40] Mehta, VB; Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math., 122, 1, 27-40 (1985) · Zbl 0601.14043 · doi:10.2307/1971368
[41] Mumford, D.: Abelian varieties, volume 5 of Tata Institute of Fundamental Research Studies in Mathematics. Hindustan Book Agency, New Delhi, (2008). With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition · Zbl 1177.14001
[42] Oda, T., The first de Rham cohomology group and Dieudonné modules, Ann. Sci. École Norm. Sup., 4, 2, 63-135 (1969) · Zbl 0175.47901 · doi:10.24033/asens.1175
[43] Orlov, D., Derived categories of coherent sheaves, and motives, Uspekhi Mat. Nauk, 60, 6366, 231-232 (2005) · Zbl 1146.18302
[44] Petrov, A., Rigid-analytic varieties with projective reduction violating Hodge symmetry, Comp. Math., 157, 3, 625-640 (2021) · Zbl 1457.14058 · doi:10.1112/S0010437X20007708
[45] Popa, M.; Schnell, C., Derived invariance of the number of holomorphic 1-forms and vector fields, Ann. Sci. Éc. Norm. Supér., 44, 3, 527-536 (2011) · Zbl 1221.14020 · doi:10.24033/asens.2149
[46] Raynaud, M.: “\(p\)-torsion” du schéma de Picard. In: Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, volume 64 of Astérisque, pages 87-148. Soc. Math. France, Paris, (1979) · Zbl 0434.14024
[47] Schnell, C.: The fundamental group is not a derived invariant. In: Derived categories in algebraic geometry, EMS Ser. Congr. Rep., pages 279-285. Eur. Math. Soc., Zürich, (2012). Also arXiv:1112.3586 · Zbl 1284.14024
[48] Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique \(p\). In: Symposium internacional de topología algebraica International symposium on algebraic topology, pages 24-53. Universidad Nacional Autónoma de México and UNESCO, Mexico City, (1958) · Zbl 0098.13103
[49] The Stacks Project Authors: Stacks Project. stacks.math.columbia.edu
[50] van der Geer, G.; Katsura, T., On the height of Calabi-Yau varieties in positive characteristic, Doc. Math., 8, 97-113 (2003) · Zbl 1074.14524 · doi:10.4171/dm/140
[51] van Dobben de Bruyn, R., The Hodge ring of varieties in positive characteristic, Algebra Number Theory, 15, 3, 729-745 (2021) · Zbl 1474.14039 · doi:10.2140/ant.2021.15.729
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.