×

Erdős-Ginzburg-Ziv type generalizations for linear equations and linear inequalities in three variables. (English) Zbl 1519.05242

Summary: For any linear inequality in three variables \(\mathcal{L}\), we determine (if it exists) the smallest integer \(R(\mathcal{L},\mathbb{Z}/3\mathbb{Z})\) such that: for every mapping \(\chi:[1,n]\rightarrow\{0,1,2\}\), with \(n\geq R(\mathcal{L},\mathbb{Z}/3\mathbb{Z})\), there is a solution \((x_1,x_2,x_3)\in[1,n]^3\) of \(\mathcal{L}\) with \(\chi(x_1)+\chi(x_2)+\chi(x_3)\equiv 0\pmod{3}\). Moreover, we prove that \(R(\mathcal{L},\mathbb{Z}/3\mathbb{Z})=R(\mathcal{L},2)\), where \(R(\mathcal{L},2)\) denotes the classical 2-color Rado number, that is, the smallest integer (provided it exists) such that for every 2-coloring of \([1,n]\), with \(n\geq R(\mathcal{L},2)\), there is a monochromatic solution of \(\mathcal{L}\). Thus, we get an Erdős-Ginzburg-Ziv type generalization for all linear Diophantine inequalities in three variables having a solution in the positive integers. We also show a number of families of linear Diophantine equations in three variables \(\mathcal{L}\) which do not admit such Erdős-Ginzburg-Ziv type generalization, named \(R(\mathcal{L},\mathbb{Z}/3\mathbb{Z})\neq R(\mathcal{L},2)\). At the end of this paper some questions are proposed.

MSC:

05D10 Ramsey theory
11B75 Other combinatorial number theory
11B50 Sequences (mod \(m\))
11D75 Diophantine inequalities

References:

[1] S. D. Adhikari, L. Boza, S. Eliahou, J. M. Mar´ın, M. P. Revuelta and M. I. Sanz., On then-color Rado number for the equationx1+x2+. . .+xk+c=xk+1,Math. Comput.85 (2016), 2047-2064. · Zbl 1332.05011
[2] B. Alexeev and J. Tsimerman, Equations resolving a conjecture of Rado on partition regularity,J. Combin. Theory Ser. A117 (2010), 1008-1010. · Zbl 1227.05052
[3] J. Bass, Improving the Erd˝os-Ginzburg-Ziv theorem for some non-abelian groups, J. Number Theory126(2) (2007), 217-236. · Zbl 1179.20022
[4] A. Bialostocki, Some problems in view of recent developments of the Erd˝osGinzburg-Ziv theorem inCombinatorial Number Theory, De Gruyter Proceedings in Mathematics (2007), 111-120. · Zbl 1140.11006
[5] A. Bialostocki, G. Bialostocki and D. Schaal, A zero-sum theorem,J. Combin. Theory Ser. A101 (2003), 147-152. · Zbl 1017.05102
[6] A. Bialostocki and P. Dierker, On the Erd˝os-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings,Discrete Math.(1992) 110(1-3), 1-8. · Zbl 0774.05065
[7] Y. Caro, Zero-sum problems-a survey,Discrete Math.152(1-3) (1996), 93-113. · Zbl 0856.05068
[8] Y. Caro, A. Hansberg and A. Montejano, Zero-sum subsequences in bounded-sum {−1,1}-sequences,J. Combin. Theory Ser. A161 (2019), 387-419. · Zbl 1434.11065
[9] Y. Caro, A. Hansberg and A. Montejano, Zero-SumKmoverZand the story of K4,Graphs Combin.35(4) (2019), 855-865. · Zbl 1416.05186
[10] C. Elsholtz, Lower bounds for multidimensional zero sums,Combinatorica24 (2004), 351-358. · Zbl 1064.11018
[11] P. Erd˝os, A. Ginzburg and A. Ziv, Theorem in additive number theory,Bull. Res. Counc. Isr.10F (1961), 41-43. · Zbl 0063.00009
[12] S. Griffiths, The Erd˝os-Ginzberg-Ziv theorem with units,Discrete Math308 (23) (2008), 5473-5484. · Zbl 1206.11032
[13] D. Grynkiewicz, On four colored sets with nondecreasing diameter and the Erd˝os-Ginzburg-Ziv Theorem,J. Combin. Theory Ser. A100(1) (2002), 44-60. · Zbl 1027.11016
[14] D. Grynkiewicz, On the number ofm-term zero-sum subsequences,Acta Arith. 121(3) (2006), 275-298. · Zbl 1111.11010
[15] D. Grynkiewicz, A Weighted Erd˝os-Ginzburg-Ziv Theorem,Combinatorica 26(4) (2006), 445-453. · Zbl 1121.11018
[16] D. Grynkiewicz,Structural Additive Theory, Developments in Mathematics 30 Springer (2013).
[17] M. Kisin, The number of zero sums modulomin a sequence of lengthn,Mathematika41(1) (1994), 149-163. · Zbl 0804.11019
[18] B. M. Landman and A. Robertson,Ramsey Theory on the Integers, Student Mathematical Library Vol. 73 AMS (2015). · Zbl 1307.05218
[19] E. Naslund, Exponential bounds for the Erd˝os-Ginzburg-Ziv constant,J. Combin. Theory, Ser. A174 (2020), 105185. · Zbl 1457.11020
[20] C. Reiher, On Kemnitz’ conjecture concerning lattice-points in the plane,Ramanujan J.13 (2007), 333-337. · Zbl 1126.11011
[21] A. Robertson, Zero-sum generalized Schur numbers,J. Combin. Number Theory 10 (2018), 51-62. · Zbl 1422.05101
[22] A. Robertson, Zero-sum analogues of van der Waerden’s theorem on arithmetic progressions,J. Comb.11 (2020), 231-248. · Zbl 1472.11080
[23] A. Robertson, B. Roy and S. Sarkar, The determination of 2-color zero-sum generalized Schur numbers,Integers18 (2018), Paper No. A96, 7 pp. · Zbl 1416.05282
[24] B. Roy and S. Sarkar, On determination of zero-sumℓ-generalized Schur numbers for some linear equations,J. Combin. Number Theory11 (2020), 15-26
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.