×

Zero-sum subsequences in bounded-sum \(\{-1,1\}\)-sequences. (English) Zbl 1434.11065

Summary: The following result gives the flavor of this paper: Let \(t\), \(k\) and \(q\) be integers such that \(q \geq 0\), \(0 \leq t < k\) and \(t \equiv k\pmod 2\), and let \(s \in [0, t + 1]\) be the unique integer satisfying \(s \equiv q + \frac{k - t - 2}{2}\pmod{(t + 2)}\). Then for any integer \(n\) such that \[ n \geq \max \left\{k, \frac{1}{2(t + 2)} k^2 + \frac{q - s}{t + 2} k - \frac{t}{2} + s \right\} \] and any function \(f : [n] \rightarrow \{- 1, 1 \}\) with \(| \sum_{i = 1}^n f(i) | \leq q\), there is a set \(B \subseteq [n]\) of \(k\) consecutive integers with \(| \sum_{y \in B} f(y) | \leq t\). Moreover, this bound is sharp for all the parameters involved and a characterization of the extremal sequences is given.
This and other similar results involving different subsequences are presented, including decompositions of sequences into subsequences of bounded weight.

MSC:

11B75 Other combinatorial number theory
05D10 Ramsey theory
11K38 Irregularities of distribution, discrepancy

References:

[1] Ambrus, G.; Bárány, I.; Grinberg, V., Small subset sums, Linear Algebra Appl., 499, 66-78, (2016) · Zbl 1337.52006
[2] Augspurger, C.; Minter, M.; Shoukry, K.; Sissokho, P.; Voss, K., Avoiding zero-sum subsequences of prescribed length over the integers, Integers, 17, (2017) · Zbl 1412.11017
[3] Bárány, I., On the power of linear dependencies, (Building Bridges, Bolyai Soc. Math. Stud., vol. 19, (2008), Springer Berlin), 31-45 · Zbl 1160.15001
[4] Borwein, P.; Choi, S. K.K.; Coons, M., Completely multiplicative functions taking values in \(- 1, 1\), Trans. Amer. Math. Soc., 362, 12, 6279-6291, (2010) · Zbl 1222.11111
[5] Caro, Y.; Yuster, R., On zero-sum and almost zero-sum subgraphs over \(\mathbb{Z}\), Graphs Combin., 32, 1, 39-63, (2016) · Zbl 1331.05098
[6] Chazelle, B., The discrepancy method: randomness and complexity, (2000), Cambridge University Press · Zbl 0960.65149
[7] Hildebrand, A., On consecutive values of the Liouville function, Enseign. Math. (2), 32, 3-4, 219-226, (1986) · Zbl 0615.10054
[8] Huxley, M. N., The distribution of prime numbers, Oxford Math. Monogr., (1972), Chapter 17 · Zbl 0248.10030
[9] Matusek, J.; Spencer, J., Discrepancy in arithmetic progressions, J. Amer. Math. Soc., 9, 1, (1996) · Zbl 0854.11009
[10] Roth, K. F., Remark concerning integer sequences, Acta Arith., 9, 257-260, (1964) · Zbl 0125.29601
[11] Sahs, M. L.; Sissokho, P. A.; Torf, J. N., A zero-sum theorem over \(\mathbb{Z}\), Integers, 13, A70, (2013), 11 pp. · Zbl 1284.11032
[12] Sevastyanov, S. V., Approximate solution of some problems of scheduling theory, Metody Diskret. Analiza v Sinteze Upravl. Sistem, Diskret. Analiz, 32, 66-75, (1978), 96-97 (in Russian) · Zbl 0452.90033
[13] Tao, T., The Erdős discrepancy problem, Discrete Anal., (2016) · Zbl 1353.11087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.