×

On the passage from finite braces to pre-Lie rings. (English) Zbl 1512.17055

Let \(p\) be a prime. The Lazard correspondence in group theory is between Lazard \(p\)-Lie rings and Lazard Lie \(p\)-groups. In [W. Rump, Note Mat. 34, 115–145 (2014; Zbl 1344.14029)], it was suggested that this correspondence could be extended to one between pre-Lie rings and braces. A formula of constructing a brace from a pre-Lie ring (using the Lazard correspondence) was also developed there.
A pre-Lie ring is a vector space \(A\) with a binary operation \(\cdot\) and a group operation \(+\) such that \((A,+)\) is abelian and \begin{align*} (x\cdot y)\cdot z - x\cdot (y\cdot z) & = (y\cdot x)\cdot z - y\cdot (x\cdot z)\\ (x + y) \cdot z & = x\cdot z + y\cdot z\\ x \cdot (y+z) & = x \cdot y + x\cdot z \end{align*} hold for all \(x,y,z\in A\).
A (left) brace is a set \(A\) equipped with two group operations \(+\) and \(\circ\) such that \((A,+)\) is abelian and \[ x \circ (y + z) + x = x\circ y + x \circ z \] holds for all \(x,y,z\in A\). Brace was introduced in [W. Rump, J. Algebra 307, 153–170 (2007; Zbl 1115.16022)] to describe all non-degenerate and involutive set-theoretic solutions of the Yang-Baxter equation. The definition stated here in from [F. Cedó et al., Commun. Math. Phys. 327, 101–116 (2014; Zbl 1287.81062)].
The paper under review shows that the aforementioned formula of Rump works for all left nilpotent pre-Lie rings of order \(p^n\) when \(n\leq p-2\). In particular, it was shown that for any \(n\leq p-2\), there is an injective mapping from left nilpotent pre-Lie rings of order \(p^n\) to left nilpotent braces of order \(p^n\) which preserves right nilpotency. Whether there is a passage from left nilpotent braces to left nilpotent pre-Lie rings remains an open question.
The paper under review also provides a method of constructing a pre-Lie ring from a brace. In particular, it was shown that for any \(k\leq p -1\) and \(n\leq p-2\), there is a one-to-one correspondence between strongly nilpotent braces of order \(p^n\) and nilpotent pre-Lie rings of order \(p^n\) which preserves nilpotency index.

MSC:

17D25 Lie-admissible algebras
16T25 Yang-Baxter equations
20E99 Structure and classification of infinite or finite groups

References:

[1] Agrachev, A.; Gamkrelidze, R., Chronological algebras and nonstationary vector fields, J. Sov. Math., 17, 1, 1650-1675 (1981) · Zbl 0473.58021
[2] Bachiller, D., Counterexample to a conjecture about braces, J. Algebra, 453, 160-176 (2016) · Zbl 1338.16022
[3] Bachiller, D., Classification of braces of order \(p^3\), J. Pure Appl. Algebra, 219, 8, 3568-3603 (2015) · Zbl 1312.81099
[4] Bachiller, D., Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks, J. Knot Theory Ramif., 27, 08, Article 1850055 pp. (2018) · Zbl 1443.16040
[5] Bai, C., Introduction to pre-Lie algebras (2016)
[6] Brzeziński, T., Trusses: between braces and rings, Trans. Am. Math. Soc., 372, 6, 4149-4176 (2019) · Zbl 1471.16053
[7] Burde, D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4, 323-357 (2006) · Zbl 1151.17301
[8] Catino, F.; Cedó, F.; Stefanelli, P., Nilpotency in left semi-braces · Zbl 1498.16042
[9] Catino, F.; Rizzo, R., Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc., 79, 1, 103-107 (2009) · Zbl 1184.20001
[10] Cedó, F.; Jespers, E.; Okniński, J., Braces and the Yang-Baxter equation, Commun. Math. Phys., 327, 101-116 (2014) · Zbl 1287.81062
[11] Cedó, F.; Jespers, E.; Okniński, J., Primitive set-theoretic solutions of the Yang-Baxter equation · Zbl 1512.16031
[12] Cedó, F.; Jespers, E.; Okniński, J., Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math., 224, 6, 2472-2484 (2010) · Zbl 1192.81202
[13] Cedó, F.; Jespers, E.; del Rio, A., Involutive Yang-Baxter groups, Trans. Am. Math. Soc., 362, 2541-2558 (2010) · Zbl 1188.81115
[14] Cedó, F.; Okniński, J., New simple solutions of the Yang-Baxter equation and solutions associated to simple left braces, J. Algebra, 600, 15, 125-151 (2022) · Zbl 1495.16031
[15] Cedó, F.; Smoktunowicz, A.; Vendramin, L., Skew left braces of nilpotent type, Proc. Lond. Math. Soc. (3), 118, 6, 1367-1392 (2019) · Zbl 1432.16031
[16] Childs, L. N., Skew braces and the Galois correspondence for Hopf-Galois structures, J. Algebra, 511, 270-291 (2018) · Zbl 1396.12003
[17] Chouraqui, F., Garside groups and Yang-Baxter equation, Commun. Algebra, 38, 12, 4441-4460 (2009) · Zbl 1216.16023
[18] Colazzo, I.; Jespers, E.; Kubat, Ł., Set-theoretic solutions of the pentagon equation, Commun. Math. Phys., 380, 1003-1024 (2020) · Zbl 1482.16059
[19] Dietzel, C.; Rump, W.; Zhang, X., One-sided orthogonality, orthomodular spaces, quantum sets, and a class of Garside groups, J. Algebra, 526, 51-80 (2019) · Zbl 1416.51004
[20] Doikou, A.; Smoktunowicz, A., From braces to Hecke algebras and quantum groups, J. Algebra Appl. (2022), online ready
[21] Doikou, A.; Smoktunowicz, A., Set-theoretic Yang-Baxter and reflection equations and quantum group symmetries, Lett. Math. Phys., 111, 105 (2021) · Zbl 1486.16039
[22] Etingof, P.; Schedler, T.; Soloviev, A., Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J., 100, 2, 169-209 (1999) · Zbl 0969.81030
[23] Gateva-Ivanova, T., Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, Adv. Math., 338, 649-701 (2018) · Zbl 1437.16028
[24] Gateva-Ivanova, T.; Cameron, P., Multipermutation solutions of the Yang-Baxter equation, Commun. Math. Phys., 309, 583-621 (2021) · Zbl 1247.81211
[25] Gateva-Ivanova, T.; Van den Bergh, M., Semigroups of I-type, J. Algebra, 206, 97-112 (1998) · Zbl 0944.20049
[26] Guareni, L.; Vendramin, L., Skew braces and the Yang-Baxter equation, Math. Comput., 86, 2519-2534 (2017) · Zbl 1371.16037
[27] Iyudu, N., Classification of contraction algebras and pre-Lie algebras associated to braces and trusses
[28] Jedlićka, P.; Pilitowska, A.; Zamojska-Dzienio, A., The retraction relation for biracks, J. Pure Appl. Algebra, 223, 8, 3594-3610 (2019) · Zbl 1411.16032
[29] Jespers, E.; Kubat, Ł.; Van Antwerpen, A.; Vendramin, L., Radical and weight of skew braces and their applications to structure groups of solutions of the Yang-Baxter equation, Adv. Math., 385, 7, Article 107767 pp. (2021) · Zbl 1473.16028
[30] Jespers, E.; Kubat, Ł.; Van Antwerpen, A.; Vendramin, L., Factorizations of skew braces, Math. Ann, 375, 1649-1663 (2019) · Zbl 1446.16040
[31] Khukhro, E. I., p-Automorphisms of Finite p-Groups, London Mathematical Society Lecture Note Series, vol. 246 (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0897.20018
[32] Koch, A.; Truman, P. J., Opposite skew left braces and applications, J. Algebra, 546, 218-235 (15 March 2020) · Zbl 1435.16009
[33] Lau, I., An associative left brace is a ring, J. Algebra Appl., 19, 09, Article 2050179 pp. (2019) · Zbl 1467.16037
[34] Lebed, V.; Vendramin, L., Cohomology and extensions of braces, Pac. J. Math., 284, 1, 191-212 (2016) · Zbl 1357.20009
[35] Manchon, D., A short survey on pre-Lie algebras, (Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory (2011)), 89-102 · Zbl 1278.17001
[36] Nejabati Zenouz, K., Skew braces and Hopf-Galois structures of Heisenberg type, J. Algebra, 524, 187-225 (2019) · Zbl 1444.16049
[37] Newman, M. F.; O’Brien, E. A.; Vaughan-Lee, M. R., Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278, 383-401 (2004) · Zbl 1072.20022
[38] Puljić, D., Right nilpotency of braces of cardinality \(p^4\)
[39] Puljić, D.; Smoktunowicz, A.; Nejabati-Zenouz, K., Some braces of cardinality \(p^4\) and related Hopf-Galois extensions, N.Y. J. Math., 28, 494-522 (2022) · Zbl 1495.16032
[40] Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 153-170 (2007) · Zbl 1115.16022
[41] Rump, W., The brace of a classical group, Note Mat., 34, 1, 115-144 (2014) · Zbl 1344.14029
[42] Rump, W., Construction of finite braces, Ann. Comb., 23, 391-416 (2019) · Zbl 1458.20025
[43] Smoktunowicz, A.; Smoktunowicz, A., Set-theoretic solutions of the Yang-Baxter equation and new classes of R-matrices, Linear Algebra Appl., 546, 86-114 (2018) · Zbl 1384.16025
[44] Smoktunowicz, A., A note on set-theoretic solutions of the Yang-Baxter equation, J. Algebra, 500, 15, 3-18 (2018) · Zbl 1442.16037
[45] Smoktunowicz, A., On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation, Trans. Am. Math. Soc., 370, 9, 6535-6564 (2018) · Zbl 1440.16040
[46] Smoktunowicz, A., Algebraic approach to Rump’s results on relations between braces and pre-Lie algebras, J. Algebra Appl., 21, 03, Article 2250054 pp. (2022) · Zbl 1505.16048
[47] Smoktunowicz, A., A new formula for Lazard’s correspondence for finite braces and pre-Lie algebras, J. Algebra, 594, 202-229 (2022) · Zbl 1505.16066
[48] Smoktunowicz, A.; Vendramin, L., On skew braces, J. Comb. Algebra, 2, 1, 47-86 (2018), with an appendix by N. Byott and L. Vendramin · Zbl 1416.16037
[49] Vendramin, L., Problems on left skew braces, (Advances in Group Theory and Applications. Advances in Group Theory and Applications, 2019 AGTA, vol. 7 (2019)), 15-37 · Zbl 1468.16050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.