×

Some braces of cardinality \(p^4\) and related Hopf-Galois extensions. (English) Zbl 1495.16032

The notion of braces was introduced by W. Rump [J. Algebra 307, 153–170 (2007; Zbl 1115.16022)] as a generalization of Jacobson radical rings in order to study involutive set-theoretic solutions of the Yang-Baxter equation. Specifically, a (left) brace is a set \(A\) endowed with two binary operations \(+\) and \(\circ\) such that
1.
\((A,+)\) is an abelian group (the additive group of the brace);
2.
\((A,\circ)\) is a group (the multiplicative group of the brace);
3.
\(a\circ (b+c) + a = a\circ b + a\circ c\) holds for all \(a,b,c\in A\) (the brace relation).
Moreover, a brace \(A\) is left nilpotent if \(A^n=0\) for some \(n\in\mathbb{N}\), and right nilpotent if \(A^{(n)}=0\) for some \(n\in\mathbb{N}\). Here \(A^i\) and \(A^{(i)}\) are defined inductively by \[ A = A^1 = A^{(1)},\,\ A^{i+1} = A*A^i,\,\ A^{(i+1)} = A^{(i)} * A, \] where \(*\) is the binary operation \(a * b = a\circ b - a - b\).
The authors noted in the introduction that while several methods exist for characterizing right nilpotent braces of prime power order, braces which are not right nilpotent are more difficult to understand. The paper under review tackles this problem by constructing all braces \(A\) of cardinality \(p^4\) which are not right nilpotent and whose additive group \((A,+)\) is elementary abelian. For \(p>3\), by a result of [D. Bachiller, J. Algebra 453, 160–176 (2016; Zbl 1339.16022)], the multiplicative group \((A,\circ)\) of such a brace must be group XIV or group XV in the notation Burnside. The authors show that group XIV in fact does not occur (Section 8), and they construct all braces \(A\) as described above for which \((A,\circ)\) is group XV (Theorems 5.5 and 6.3). For \(p=2,3\), braces of order \(p^4\) can be calculated the GAP package.

MSC:

16T25 Yang-Baxter equations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
20D15 Finite nilpotent groups, \(p\)-groups

References:

[1] Acri, Emiliano;Bonatto Marco. Skew braces of size𝑝𝑞.Comm. Algebra48(2020), no. 5, 1872-1881.MR4085764,Zbl 1437.16027,arXiv:1908.03228, doi:10.1080/00927872.2019.1709480.495 · Zbl 1437.16027
[2] Bachiller, David. Classification of braces of order𝑝3.J. Pure Appl. Algebra219(2015), no. 8, 3568-3603.MR3320237,Zbl 1312.81099,arXiv:1407.5224, doi:10.1016/j.jpaa.2014.12.013.495,515,517,519 SOME BRACES OF CARDINALITY𝑝4AND RELATED HOPF-GALOIS EXTENSIONS521 · Zbl 1312.81099
[3] Bachiller,David.Counterexampletoaconjectureaboutbraces.J. Algebra453(2016),160-176.MR3465351,Zbl1338.16022,arXiv:1507.02137, doi:10.1016/j.jalgebra.2016.01.011.497,500,501,519
[4] Burnside, William. Theory of groups of finite order. EBook, 40395.Project Gutenberg, Urbana, Illinois, 2012. xv+456 pp.https://www.gutenberg.org/ebooks/40395.497
[5] Catino, Francesco; Rizzo Roberto. Regular subgroups of the affine group and radical circle algebras.Bull. Aust. Math. Soc.79(2009), no. 1, 103-107.MR2486886,Zbl 1184.20001, doi:10.1017/S0004972708001068.496 · Zbl 1184.20001
[6] Cedó, Ferran; Jespers Eric; Okniński, Jan. Braces and the Yang-Baxter equation.Comm. Math. Phys.327(2014), no. 1, 101-116.MR3177933,Zbl 1287.81062, arXiv:1205.3587, doi:10.1007/s00220-014-1935-y.496,497,502 · Zbl 1287.81062
[7] Cedó, Ferran; Jespers Eric; Okniński, Jan. Primitive set-theoretic solutions of the Yang-Baxter equation.Commun. Contemp. Math.(2022).arXiv:2003.01983, doi:10.1142/S0219199721501054. · Zbl 1192.81202
[8] Cedó, Ferran; Jespers Eric; del Rio, Ángel. Involutive Yang-Baxter groups. Trans. Amer. Math. Soc.362(2010), no. 5, 2541- 2558.MR2584610,Zbl 1188.81115, arXiv:0803.4054, doi:10.1090/S0002-9947-09-04927-7.498,511 · Zbl 1188.81115
[9] Dietzel,Carsten. Braces of order𝑝2𝑞.J. Algebra. Appl.20(2021),no. 8,Paper No. 2150140. 24 pp.MR4297324,Zbl 07411750,arXiv:1801.06911, doi:10.1142/S0219498821501401.495 · Zbl 1486.16040
[10] Gateva-Ivanova, Tatiana. Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups.Adv. Math.338(2018), 649-701.MR3861714,Zbl 1437.16028, arXiv:1507.02602, doi:10.1016/j.aim.2018.09.005.494 · Zbl 1437.16028
[11] Guarnieri, Leandro; Vendramin, Leandro. Skew braces and the Yang-Baxter equation.Math. Comp.86, (2017), no. 307, 2519-2534.MR3647970,Zbl 1371.16037, arXiv:1511.03171, doi:10.1090/mcom/3161.495 · Zbl 1371.16037
[12] Nejabati Zenouz, Kayvan. Skew braces and Hopf-Galois structures of Heisenberg type.J. Algebra524(2019), 187-225.MR3905210,Zbl 1444.16049,arXiv:1804.01360, doi:10.1016/j.jalgebra.2019.01.012.519 · Zbl 1444.16049
[13] Nejabati Zenouz, Kayvan. On Hopf-Galois Structures and Skew Braces of Order𝑝3. Ph.D. thesis. The University of Exeter, 2018.495,519 · Zbl 1444.16049
[14] Rump, Wolfgang. Classification of cyclic braces.J. Pure. Appl. Algebra209(2007), no. 3, 671-685.MR2298848,Zbl 1170.16031, doi:10.1016/j.jpaa.2006.07.001.495 · Zbl 1170.16031
[15] Rump, Wolfgang. Classification of cyclic braces. II.Trans. Amer. Math. Soc.372(2019), no. 1, 305-328.MR3968770,Zbl 1417.81140, doi:10.1090/TRAN/7569.495 · Zbl 1417.81140
[16] Rump, Wolfgang. Braces, radical rings, and the quantum Yang-Baxter equation.J. Algebra307(2007),no. 1,153-170.MR2278047,Zbl 1115.16022, doi:10.1016/j.jalgebra.2006.03.040.496,497,499 · Zbl 1115.16022
[17] Rump, Wolfgang. The brace of a classical group.Note. Mat.34(2014), no. 1, 115-144. MR3291816,Zbl 1344.14029, doi:10.1285/I15900932V34N1P115.495,496 · Zbl 1344.14029
[18] Smoktunowicz, Agata. On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation.Trans. Amer. Math. Soc.370(2018), no. 9, 6535-6564. MR3814340,Zbl 1440.16040,arXiv:1509.00420, doi:10.1090/tran/7179.497 · Zbl 1440.16040
[19] Smoktunowicz, Agata. Algebraic approach to Rump’s results on relations between braces and pre-Lie algebras.J. Algebra. Appl.(2020).arXiv:2007.09403, doi:10.1142/S0219498822500542. · Zbl 1505.16048
[20] Smoktunowicz, Agata. A new formula for Lazard’s correspondence for finite braces and pre-Lie algebras.J. Algebra594(2022), 202-229.MR4353236,Zbl 07459375, arXiv:2011.07611, doi:10.1016/j.jalgebra.2021.11.027.495,515 · Zbl 1505.16066
[21] Smoktunowicz, Agata; Vendramin, Leandro. On skew braces (with an appendix by N. Byott and L. Vendramin)J. Comb. Algebra2(2018), no. 1, 47-86.MR3763907,Zbl 1416.16037,arXiv:1705.06958, doi:10.4171/JCA/2-1-3.495,519 · Zbl 1416.16037
[22] Vendramin, Leandro. Problems on skew left braces.Adv. Group Theory Appl.7(2019), 15-37.MR3974481,Zbl 1468.16050,arXiv:1807.06411, doi:10.32037/agta-2019-003 · Zbl 1468.16050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.