×

Integral points on Markoff type cubic surfaces. (English) Zbl 1510.11088

This is a beautiful paper, significant both mathematically (in terms of proof, technique, and structure revealed) and scientifically (in terms of questions raised and rigorously tested). It is a pioneering study on “critical” cubic equations; see [Y. Harpaz, Ann. Inst. Fourier 67, No. 5, 2167–2200 (2017; Zbl 1401.14125)] for a nice reference on the broader setting of log Calabi-Yau surfaces, in which the present paper lives.
Let \(M(x,y,z) = x^2+y^2+z^2-xyz\) be the Markoff polynomial. The authors show that for integers \(k\), the Markoff-type cubic surface \(M = k\) almost always satisfies the integral Hasse principle, but also sometimes fails it (so that “almost always” cannot be improved to “always”). As in past works of the same flavor, the proof is based on a variance-type analysis. But for “critical” equations such as \(M = k\), one cannot directly adapt older “subcritical” variance-type frameworks (such as those of R. C. Vaughan [Proc. Lond. Math. Soc. (3) 41, 516–532 (1980; Zbl 0446.10042)], J. Brüdern [Math. Scand. 68, No. 1, 27–45 (1991; Zbl 0759.11031)], and C. Hooley [Acta Arith. 173, No. 1, 19–39 (2016; Zbl 1359.11081)]). New issues, related to the square-root barrier in the classical circle method, emerge, in the most difficult piece (44) of the authors’ variance-type analysis.
At least generically, the authors handle the square-root aspect using the partially quadratic nature of the Markoff cubic, together with a mildly uniform version of the Kloosterman circle method for quadratic forms in \(4\) variables (for example, the delta method of [W. Duke et al., Invent. Math. 112, No. 1, 1–8 (1993; Zbl 0765.11038)] and [D. R. Heath-Brown, J. Reine Angew. Math. 481, 149–206 (1996; Zbl 0857.11049)] would suffice, up to uniformity questions that have been addressed in [N. Niedermowwe, J. Math. Sci., New York 171, No. 6, 753–764 (2010; Zbl 1282.11140)]). But in (44), there are also further multiplicative subtleties involving binary quadratic forms (see Lemma 9.5), which the authors address using [V. Blomer and A. Granville, Duke Math. J. 135, No. 2, 261–302 (2006; Zbl 1135.11020)].
One also has to produce, for typical integers \(k\), a lower bound on a suitable approximate singular series (36). The quantity (36) is related to the value of an \(L\)-function at \(s=1\) (see (61)), essentially since \(M=k\) is a surface. So (36) is more delicate to handle than similar quantities were in previous works.
It is worth mentioning several other aspects of the paper. The equations \(M=k\) define certain relative character varieties, and carry a rich group of nonlinear symmetries (Markoff morphisms, generated by permutations and Vieta moves), rich enough so that the integral points on \(M=k\) (for any \(k\)) lie in at most finitely many orbits. Thus the authors produce (for almost all \(k\)) not only integral points, but in fact a Zariski dense set of integral points (see §5). Furthermore, Theorem 1.1 provides an “explicit reduction (descent)” algorithm on \(M=k\), and this algorithm allows for rigorous numerical study of Hasse failures for \(k\) up to any finite threshold. This leads to the fascinating Conjecture 10.2(1) that the number of Hasse failures for \(0\le k\le K\) as \(K\to \infty\) is asymptotic to a constant times \(K^\theta\), for some \(\theta\in (\frac12, 1)\); the fact that \(\theta\) could be strictly greater than \(\frac12\) is striking, given that so far one only knows how to rigorously produce around \(O(K^{1/2})\) Hasse failures as \(K\to \infty\) (see e.g. the works [J.-L. Colliot-Thélène et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 21, 1257–1313 (2020; Zbl 1478.11091) and [D. Loughran and V. Mitankin, Int. Math. Res. Not. 2021, No. 18, 14086–14122 (2021; Zbl 1485.11106)] inspired by the paper under review). Note that there would be no convincing basis for this conjecture were it not for Theorem 1.1.

MSC:

11D25 Cubic and quartic Diophantine equations
11D45 Counting solutions of Diophantine equations

References:

[1] Auroux, D., Factorizations in \(SL (2,\mathbb{Z})\) and simple examples of inequivalent Stein fillings, J. Symplectic Geom., 13, 2, 261-277 (2015) · Zbl 1317.53105 · doi:10.4310/JSG.2015.v13.n2.a1
[2] Baragar, A., Integral solutions of Markov-Hurwitz equations, J. Number Theory, 49, 1, 27-44 (1994) · Zbl 0820.11016 · doi:10.1006/jnth.1994.1078
[3] Beukers, F., Ternary form equations, J. Number Theory, 54, 113-133 (1995) · Zbl 0840.11027 · doi:10.1006/jnth.1995.1105
[4] Bhargava, M., Higher composition laws I: a new view on Gauss composition, and quadratic generalizations, Ann. Math., 159, 1, 217-250 (2004) · Zbl 1072.11078 · doi:10.4007/annals.2004.159.217
[5] Bhargava, M.; Shankar, A., Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0, Ann. Math., 181, 2, 587-621 (2015) · Zbl 1317.11038 · doi:10.4007/annals.2015.181.2.4
[6] Blomer, V.; Granville, A., Estimates for representation numbers of quadratic forms, Duke Math. J., 135, 2, 261-302 (2006) · Zbl 1135.11020 · doi:10.1215/S0012-7094-06-13522-6
[7] Booker, A.R.: Cracking the problem with 33. Res. Number Theory 5(26) (2019) · Zbl 1472.11093
[8] Bourgain, J.; Fuchs, E., A proof of the positive density conjecture for integer Apollonian circle packings, J. Am. Math. Soc., 24, 945-967 (2011) · Zbl 1228.11035 · doi:10.1090/S0894-0347-2011-00707-8
[9] Bourgain, J., Gamburd, A., Sarnak, P.: Markoff surfaces and strong approximation: 1, arXiv: 1607.01530 (2016) · Zbl 1378.11043
[10] Bourgain, J.; Gamburd, A.; Sarnak, P., Markoff triples and strong approximation, Comptes Rendus Math., 354, 2, 131-135 (2016) · Zbl 1378.11043 · doi:10.1016/j.crma.2015.12.006
[11] Browning, T.D.: A survey of applications of the circle method to rational points. Lond. Math. Soc. Lecture Note Series, pp. 89-113, Cambridge University Press (2015) · Zbl 1387.11073
[12] Browning, T.D.: How often does the Hasse principle hold? In: Proceedings of the AMS Summer Institute in Algebraic Geometry, Salt Lake City, 2015, (2018) · Zbl 1451.14074
[13] Browning, T.D., Heath-Brown, D.R.: Integral points on cubic hypersurfaces. Analytic Number Theory: Essays in honour of Klaus Roth, CUP, pp. 75-90 (2009) · Zbl 1244.11066
[14] Browning, TD; Newton, R., The proportion of failures of the Hasse norm principle, Mathematika, 62, 2, 337-347 (2016) · Zbl 1341.11037 · doi:10.1112/S0025579315000261
[15] Cantat, S.; Loray, F., Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. de l’institut Fourier, 59, 7, 2927-2978 (2009) · Zbl 1204.34123 · doi:10.5802/aif.2512
[16] Cassels, JWS, A note on the Diophantine equation \(x^3 + y^3 + z^3 = 3\), Math. Comput., 44, 265-266 (1985) · Zbl 0556.10007
[17] Cassels, JWS; Guy, MJT, On the Hasse principle for cubic surfaces, Mathematika, 13, 2, 111-120 (1966) · Zbl 0151.03405 · doi:10.1112/S0025579300003879
[18] Colliot-Thélène, J.; Wittenberg, O., Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines, Am. J. Math., 134, 5, 1303-1327 (2012) · Zbl 1295.14020 · doi:10.1353/ajm.2012.0036
[19] Colliot-Thélène, J.L., Wei, D., Xu, F.: Brauer-Manin obstruction for Markoff surfaces. Annali della Scuola Normale Superiore di Pisa vol. XXI, 1257-1313 (2020) · Zbl 1478.11091
[20] Conn, W., Vaserstein, L.N.: On sums of three integral cubes, Contemp. Math., vol. 166, American Mathematical Society, pp. 285-294 (1994) · Zbl 0808.11075
[21] Corvaja, P., Zannier, P.: On the greatest prime factor of Markov pairs, Rendiconti del Seminario Mat. della Università di Padova 116, 253-260 (eng) (2006) · Zbl 1215.11028
[22] Davenport, H.: On Waring’s problem for cubes. Acta Math. 71, 123-143 (1939) · JFM 65.0144.04
[23] Davenport, H.; Lewis, DJ, Non-homogeneous cubic equations, J. Lond. Math. Soc., s1-39, 1, 657-671 (1964) · Zbl 0125.02402 · doi:10.1112/jlms/s1-39.1.657
[24] Fuchs, C., Zannier, U.: Integral points on curves: Siegel’s theorem after Siegel’s proof, On Some Applications of Diophantine Approximations (Pisa), Scuola Normale Superiore, pp. 139-157 (2014) · Zbl 1311.11006
[25] Ghosh, A., Meiri, C., Sarnak, P.: Commutators in \(SL_2\) and Markoff surfaces I. N. Z. J. Math. 52, 773-819 (2022) · Zbl 1517.20041
[26] Ghosh, A., Sarnak, P.: Integral points on Markoff type cubic surfaces, arXiv:1706.06712 [math.NT] (2017)
[27] Goldman, WM, The modular group action on real characters of a one-holed torus, Geom. Topol., 7, 443-486 (2003) · Zbl 1037.57001 · doi:10.2140/gt.2003.7.443
[28] Heath-Brown, DR, The density of zeros of forms for which weak approximation fails, Math. Comput., 59, 200, 613-623 (1992) · Zbl 0778.11017 · doi:10.1090/S0025-5718-1992-1146835-5
[29] Heath-Brown, DR, A new form of the circle method, and its application to quadratic forms, J. für die reine und Angewandte Math., 481, 149-206 (1996) · Zbl 0857.11049
[30] Hooley, C., On the representation of numbers by quaternary and quinary cubic forms: I, Acta Arith, 173, 1, 19-39 (2016) · Zbl 1359.11081
[31] Hurwitz, A., Über eine aufgabe der unbestimmten analysis, Archiv. Math. Phys., 3, 185-196 (1907) · JFM 38.0246.01
[32] Lang, S.; Weil, A., Number of points of varieties in finite fields, Am. J. Math., 76, 4, 819-827 (1954) · Zbl 0058.27202 · doi:10.2307/2372655
[33] Lehmer, D.H.: On the Diophantine equation \(x^3+y^3+z^3=1\). J. Lond. Math. Soc. s1-31(3), 275-280 (1956) · Zbl 0072.26804
[34] Loughran, D., Mitankin, V.: Integral Hasse principle and strong approximation for Markoff surfaces. IMRN /imrn/rnz114 10, 1093 (2020) · Zbl 1485.11106
[35] Markoff, A., Sur les formes quadratiques binaires indéfinies, Math. Annalen, 15, 381-406 (1879) · JFM 11.0147.01 · doi:10.1007/BF02086269
[36] Markoff, A., Sur les formes quadratiques binaires indéfinies. (second mémoire), Math. Annalen, 17, 379-399 (1880) · JFM 12.0143.02 · doi:10.1007/BF01446234
[37] Mordell, LJ, Integer solutions of the equation \(x^2+ y^2 + z^2 + 2xyz=n\), J. Lond. Math. Soc., s1-28, 4, 500-510 (1953) · Zbl 0051.27802 · doi:10.1112/jlms/s1-28.4.500
[38] Mordell, LJ, Diophantine Equations (1969), London: Academic Press, London · Zbl 0188.34503
[39] Niedermowwe, N., The circle method with weights for the representation of integers by quadratic forms, J. Math. Sci., 171, 6, 753-764 (2010) · Zbl 1282.11140 · doi:10.1007/s10958-010-0180-y
[40] Odoni, RWK, A new equidistribution property of norms of ideals in given classes, Acta Arith., 33, 1, 53-63 (1977) · Zbl 0363.10025 · doi:10.4064/aa-33-1-53-63
[41] Schmidt, W.M.: Equations Over Finite Fields: An Elementary Approach. Lectures Notes in Mathematics, vol. 536. Springer, New York (1976) · Zbl 0329.12001
[42] Schmidt, WM, Thue equations with few coefficients, Trans. Am. Math. Soc., 303, 1, 241-255 (1987) · Zbl 0634.10017 · doi:10.1090/S0002-9947-1987-0896020-1
[43] Siegel, CL, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1, 209-226 (1929) · JFM 56.0180.05
[44] Thue, A., Über Annäherungswerte algebraischer Zahlen, J. für die reine und angewandte Math, 135, 284-305 (1909) · JFM 40.0265.01 · doi:10.1515/crll.1909.135.284
[45] Vaughan, R.C., Wooley, T.D.: Waring’s problem: a survey, Number Theory for the Millennium. III, A. K. Peters, pp. 301-340 (2002) · Zbl 1044.11090
[46] Wang, V.Y.: Approaching cubic Diophantine statistics via mean-value \({L}\)-function conjectures of Random Matrix Theory type, arXiv:2108.03398 [math.NT] (2021)
[47] Whang, JP, Nonlinear descent on moduli of local systems, Israel J. Math., 240, 935-1004 (2020) · Zbl 1464.14017 · doi:10.1007/s11856-020-2085-x
[48] Wikipedia contributors, Sums of three cubes — Wikipedia, the free encyclopedia, 2019, [Online; accessed 8-September-2019]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.