×

Centralizer matrix algebras and symmetric polynomials of partitions. (English) Zbl 1509.16041

The main object under study, in this paper, is the centralizer algebra \[ S_n(C, k)=\{a\in \operatorname{M}_n(k)\colon ac=ca \ \text{ for all } c\in C \} \] of a non-empty set \(C\) of matrices in \(\operatorname{M}_n(k)\) over a field \(k\).
Given an algebraically closed field \(K\), the authors show, in [C. Xi and J. Zhang, Linear Algebra Appl. 622, 215–249 (2021; Zbl 1473.16024)], that \(S_n(\{c\}, K)\) is a cellular algebra (in the sense of [J. J. Graham and G. I. Lehrer, Invent. Math. 123, No. 1, 1–34 (1996; Zbl 0853.20029)]) and the extension \(S_n({c}, K)\subset M_n(K)\) is a Frobenius extension.
In this paper, the authors prove that a centralizer algebra \(S_n(\{c\}, k)\) of a matrix \(c\in M_n(k)\), over a field \(k\), is Frobenius-finite (in the sense of [W. Hu and C. Xi, Rev. Mat. Iberoam. 34, No. 1, 59–110 (2018; Zbl 1431.16012)]), \(1\)-minimal Auslander-Gorenstein (in the sense of [O. Iyama and Ø. Solberg, Adv. Math. 326, 200–240 (2018; Zbl 1432.16012)]), and gendo-symmetric (in the sense of [M. Fang and S. Koenig, Trans. Am. Math. Soc. 368, No. 7, 5037–5055 (2016; Zbl 1409.16006)]). Further, they prove that \(S_n(c, k)\subset M_n(k)\) is a separable Frobenius extension.
Also, the authors give a characterisation for a centralizer algebra to be semi-simple over a field of positive characteristic in terms of the cycle type of the permutation. Over algebraically closed fields, the authors characterise when two semi-simple centraliser algebras of permutation matrices can be isomorphic and Morita equivalent in terms of combinatoric data of cycle types of the underlying permutations. The latter is reduced to the computation of the number of the distinct eigenvalues of the involved permutation matrices while the former is reduced to the study of an equivalence relation in the set of partitions of a natural number \(n\).
Reviewer: Tiago Cruz (Bonn)

MSC:

16W22 Actions of groups and semigroups; invariant theory (associative rings and algebras)
16S50 Endomorphism rings; matrix rings
05A17 Combinatorial aspects of partitions of integers
15A30 Algebraic systems of matrices
11C08 Polynomials in number theory
16K99 Division rings and semisimple Artin rings

References:

[1] Andrews, G. E.; Eriksson, K., Integer Partitions (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1073.11063
[2] Beslin, S.; Ligh, S., Greatest common divisor matrices, Linear Algebra Appl., 118, 69-76 (1989) · Zbl 0672.15005
[3] Brualdi, R. A., Introductory Combinatorics (2010), Pearson Prentice Hall: Pearson Prentice Hall Upper Saddle River, NJ · Zbl 0734.05001
[4] Cartan, H.; Eilenberg, S., Homological Algebra (1956), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0075.24305
[5] Cruz, T.; Marczinzik, R., On properly stratified Gorenstein algebras, J. Pure Appl. Algebra, 225, 12, Article 106757 pp. (2021) · Zbl 1490.16023
[6] Datta, L.; Morgera, S. D., On the reducibility of centrosymmetric matrices-applications in engineering problems, Circuits Syst. Signal Process., 8, 1, 71-96 (1989) · Zbl 0674.15005
[7] Fang, M.; Koenig, S., Gendo-symmetric algebras, canonical comultiplication, bar cocomplex and dominant dimension, Trans. Am. Math. Soc., 368, 7, 5037-5055 (2016) · Zbl 1409.16006
[8] Hirata, K.; Sugano, K., On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Jpn., 18, 4, 360-373 (1966) · Zbl 0178.36802
[9] Hu, W.; Xi, C. C., Derived equivalences and stable equivalences of Morita type, II, Rev. Mat. Iberoam., 34, 59-110 (2018) · Zbl 1431.16012
[10] Iyama, O.; Solberg, Ø., Auslander-Gorenstein algebras and precluster tilting, Adv. Math., 326, 200-240 (2018) · Zbl 1432.16012
[11] Jensen, C. U.; Lenzing, H., Homological dimension and representation type of algebras under base field extension, Manuscr. Math., 39, 1, 1-13 (1982) · Zbl 0498.16023
[12] Kadison, L., New Examples of Frobenius Extensions, University Lecture Series, vol. 14 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0929.16036
[13] Li, Z. S., The determinants of GCD matrices, Linear Algebra Appl., 134, 137-143 (1990) · Zbl 0703.15012
[14] Montgomery, S., Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Mathematics, vol. 818 (1980), Springer: Springer Berlin · Zbl 0449.16001
[15] Muller, B. J., The classification of algebras by dominant dimension, Can. J. Math., 20, 398-409 (1968) · Zbl 0155.07503
[16] Panyushev, D. I., Two results on centralisers of nilpotent elements, J. Pure Appl. Algebra, 212, 774-779 (2008) · Zbl 1137.17017
[17] Premet, A., Nilpotent commuting varieties of reductive Lie algebras, Invent. Math., 154, 653-683 (2003) · Zbl 1068.17006
[18] Stuart, J. L., Inflation matrices and ZME-matrices that commute with a permutation matrix, SIAM J. Matrix Anal. Appl., 9, 3, 408-418 (1988) · Zbl 0652.15009
[19] Stuart, J. L.; Weaver, J. R., Matrices that commute with a permutation matrix, Linear Algebra Appl., 150, 255-265 (1991) · Zbl 0735.15016
[20] Sugano, K., Separable extensions and Frobenius extensions, Osaka J. Math., 7, 291-299 (1970) · Zbl 0213.04402
[21] Weaver, J. R., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Mon., 92, 10, 711-717 (1985) · Zbl 0619.15021
[22] Weyl, H., The Classical Groups. Their Invariants and Representations (1939), Princeton University Press: Princeton University Press Princeton, N.J. · JFM 65.0058.02
[23] Xi, C. C.; Yin, S. J., Cellularity of centrosymmetric matrix algebras and Frobenius extensions, Linear Algebra Appl., 590, 317-329 (2020) · Zbl 1441.16040
[24] Xi, C. C.; Zhang, J. B., Structure of centralizer matrix algebras, Linear Algebra Appl., 622, 215-249 (2021) · Zbl 1473.16024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.